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Production of methane by methanogenic archaea, or methanogens, in the rumen 
of ruminants is a thermodynamic necessity for microbial conversion of feed to 
volatile fatty acids, which are essential nutrients for the animals. On the other 
hand, methane is a greenhouse gas and its production causes energy loss for 
the animal. Accordingly, there are ongoing efforts toward developing effective 
strategies for mitigating methane emissions from ruminant livestock that require a 
detailed understanding of the diversity and ecophysiology of rumen methanogens. 
Rumen methanogens evolved from free-living autotrophic ancestors through 
genome streamlining involving gene loss and acquisition. The process yielded 
an oligotrophic lifestyle, and metabolically efficient and ecologically adapted 
descendants. This specialization poses serious challenges to the efforts of obtaining 
axenic cultures of rumen methanogens, and consequently, the information on 
their physiological properties remains in most part inferred from those of their 
non-rumen representatives. This review presents the current knowledge of rumen 
methanogens and their metabolic contributions to enteric methane production. 
It also identifies the respective critical gaps that need to be filled for aiding the 
efforts to mitigate methane emission from livestock operations and at the same 
time increasing the productivity in this critical agriculture sector.
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1. Introduction

Livestock production in the US emitted close to 200 million metric tons of CO2-equivalent 
(MMT CO2–e) of methane, mainly originating from enteric fermentation in beef and dairy cattle 
representing 72 and 25% of emissions from livestock, respectively (EPA, 2022). The 
corresponding value at the global scale is approximately 2,500 MMT CO2-e (EPA, 2023a), and 
it is estimated to rise substantially due to an increase in demand for milk and meat to feed the 
9.8 billion global population by 2050 (FAO, 2018; Henchion et al., 2021).

Methane is 28 times more potent greenhouse gas (GHG) with a much shorter shelf-life than 
CO2 (EPA, 2023b). In the rumen, it is produced as a by-product of microbial fermentation, and 
methanogenic archaea or methanogens are the only microorganisms that are known to produce 
methane anaerobically (Smith and Hungate, 1958; Ramanathan et al., 1985; Wolfe, 1992). In 
addition to contributing to global warming, methane emission from the rumen causes a loss of 
2–12% of the energy provided by the feed (Johnson and Johnson, 1995; Janssen, 2010). Hence, 
a reduction of methane emission from cattle would have a greater near-term contribution to the 
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effort toward mitigating global climate change and improving animal 
productivity (Janssen, 2010; Beauchemin et al., 2020).

For the above-mentioned importance, the metabolism of rumen 
microbes including methanogens has been investigated for almost 
eight decades (Barker, 1936; Elsden, 1945; Hungate, 1950; Beijer, 1952; 
Hungate, 1966; Henderson et al., 2015; Seshadri et al., 2018). These 
studies yielded a plethora of basic and applied science information 
about rumen methanogens including their role in facilitating 
microbial fermentation in the rumen (Hungate, 1966; Beauchemin 
et al., 2020). These details have been leveraged for developing tools for 
mitigating methane emission in the livestock industry and some of 
these can provide an average of 30% reduction in methane production 
with acceptable safety in both beef and dairy cattle (Yu et al., 2021). 
However, the outcome varies greatly (Patra et al., 2017; Arndt et al., 
2022). What causes such variabilities? Which methanogens escape 
such intervention and how could one target them effectively? What 
factors drive the composition of a rumen methanogen community 
over another, spatially and temporally? Answering these questions 
requires a deeper understanding of the metabolic diversity and in situ 
physiology of rumen methanogens, which sorely remains incomplete 
even after close to eight decades of interrogation. It is because the 
current knowledge base for this field has mostly been built on studies 
with pure culture isolates from the rumen, which are a few, and 
inferences from the properties of non-rumen methanogen isolates 
(Jeyanathan, 2010; Seshadri et al., 2018). The technical hurdles of 
working with strict anaerobes and the absence of clues to specific 
auxotrophies have limited the isolation efforts, which could have 
allowed useful in vitro studies.

The culture-independent approaches leveraging high throughput 
omics are beginning to fill the above-mentioned gap in terms of 
phylogenetic diversity and metabolic potentials. The discovery of 
species from the Methanomassiliicoccales order that provide an 
additional route for removing the hydrogen-based thermodynamic 
block on ruminal fermentation (Borrel et al., 2013) and key genomic 
features that allow rumen methanogens to associate with other 
organisms (Leahy et al., 2010; Ng et al., 2016) and battle the toxicity 
of plant product (i.e., tannin) are examples of such advances (Kelly 
et al., 2016c; Loh et al., 2020). However, the absence of information on 
the metabolic and physiological properties of individual rumen 
methanogens that are generally obtained from studies on pure culture 
isolates or even low complexity enrichments has prevented making a 
clear sense of physiological data originating from in vivo or whole 
animal-based measurements.

This review presents a summary and analysis of the past and 
evolving knowledge of rumen methanogens (Figure 1) including the 
ongoing and upcoming research that would fill the above-mentioned 
gaps and help the efforts to mitigate enteric methane emissions while 
bringing sustainability to the livestock industry.

2. Methanogenic archaea, a 
thermodynamic facilitator in rumen 
fermentation

Ruminants gain 70% of their energy from microbial activities that 
degrade feed materials in the first two compartments of the digestive 
tract, the rumen and the reticulum, which collectively called 
reticulorumen and hereafter is referred to as rumen (Flint and Bayer, 

2008; Yeoman and White, 2014). The rumen microbial community is 
composed of bacteria, protozoa, archaea, and fungi in the order of the 
most abundant to the least (Hungate, 1966; Henderson et al., 2015; 
Seshadri et al., 2018); highly abundant and diverse virus populations 
are also important components in the rumen even though it has not 
been studied significantly (Gilbert et  al., 2020). These individual 
members of rumen microbial community have been co-evolving with 
the ruminants for about 50 million years (Webb and Taylor, 1980; 
Hackmann and Spain, 2010; Jiang et al., 2014), making them resilient 
to environmental perturbation through their overlapping metabolic 
functionality (Weimer, 2015). Their concerted actions convert 
fermentable carbohydrates and amino acids anaerobically via 
fermentation into volatile fatty acids that provide energy to the 
animals and surplus reducing equivalents in the forms of hydrogen 
and formate, with most products coming from carbohydrates. If 
unutilized, excess H2 blocks the progress of fermentation 
thermodynamically, and in the rumen and many other anaerobic 
biodegradation systems, this block is removed by methanogens that 
utilize the excess H2 and generate methane (Figures 1, 2; Zinder, 1993).

Working synergistically, a group of bacteria, fungi, and protozoa 
hydrolyze cellulose and hemicellulose fibers into respective sugar 
monomers, and ferment these products into primarily three major 
volatile fatty acids, namely acetate, propionate, and butyrate that are 
absorbed by rumen epithelial walls (Hungate, 1966; Czerkawski and 
Breckenridge, 1973; Prins and van der Meer, 1976; Wolin, 1979; 
Williams and Coleman, 1997; Ragsdale, 2003; Sawers and Clark, 2004; 
Reichardt et al., 2014; Henderson et al., 2015; Hackmann et al., 2017; 
Gruninger et al., 2019; Ungerfeld, 2020; Williams et al., 2020; Pereira 
et al., 2022). In addition, lactate, ethanol, and succinate are produced 
as reduced intermediates (Gottschalk, 1986; Hackmann et al., 2017), 
where lactate and succinate are further converted to propionate 
(Gottschalk, 1986; Weimer, 1998; Reichardt et al., 2014; Hackmann 
et al., 2017; Moraïs and Mizrahi, 2019; Ungerfeld, 2020). Figure 2 
summarizes this overall process. Acetate, propionate, and butyrate 
account for 40–75%, 15–40%, and 10–20% of the total rumen VFAs, 
respectively (Wolin, 1960; Bergman, 1990; DeFrain et  al., 2004). 
Propionate serves as a major precursor for the biosynthesis of glucose 
through gluconeogenesis in the liver, which in turn is used as an 
energy source for the animal (Young, 1977). Acetate and butyrate can 
be used as precursors in lipid biogenesis by the host (Black et al., 1961; 
Hanson and Ballard, 1967; Moran, 2005).

Production of acetate and butyrate from glucose is associated with 
more negative ΔGo’ values than is propionate production (van Lingen 
et al., 2016). In addition, the production of propionate is associated 
with a net consumption of two moles of H2 per mole of glucose 
utilized, whereas that of acetate and butyrate lead to net productions 
of four and two moles of H2, respectively (van Lingen et al., 2016; 
Leahy et  al., 2022). Accordingly, despite a higher thermodynamic 
feasibility of acetate and butyrate production from glucose under 
standard conditions, the generation of these VFAs is less favored as it 
leads to H2 accumulation and consequent thermodynamic inhibition 
of microbial fermentation.

The above-mentioned fermentation process generates pyruvate, 
ATP, and NADH (Figure 2). To allow unimpeded continuation of the 
fermentation process, NAD+ must be  regenerated (Baldwin and 
Allison, 1983; Stams and Plugge, 2009). Depending on the prevailing 
cellular redox status (i.e., NAD+/NADH ratio) of the cells, it can 
be done through the production of reduced fermentation products 
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such as ethanol, lactate, and propionate, and/or hydrogen generation 
via NADH:Ferredoxin oxidoreductase coupled with a hydrogenase or 
via electron confurcation reaction involving NADH and reduced 
ferredoxin (Fdxred) (Schut and Adams, 2009; Stams and Plugge, 2009). 
Processing of pyruvate via Pyruvate Formate Lyase (PFL) provides 
acetyl-CoA and formate, and the latter can be excreted or oxidized to 
H2 by formate hydrogen lyase (Baldwin and Allison, 1983, Stams and 
Plugge, 2009). As H2 accumulates, elevating its partial pressure 
or 

2H
p , it blocks NADH oxidation thermodynamically (Baldwin and 

Allison, 1983; Gottschalk, 1986; Stams and Plugge, 2009); thus, H2 is 
a central regulator and called the ‘currency’ of rumen fermentation 
(Czerkawski, 1986). Hydrogenotrophic methanogens remove this 
block on fermentation by consuming H2 via CO2 and methyl group 
reduction to methane (4H2 + CO2 → CH4 + 2H2O; 
H2 + CH3-X → CH4 + HX) and allowing NAD+ regeneration (Baldwin 
and Allison, 1983; Stams and Plugge, 2009). Excretion of formate, as 
mentioned above, lowers pH and its sequential oxidation to H2 
imposes a thermodynamic block and methanogens alleviate these 
problems via formate methanogenesis (4HCOO− + 4H+ →  
CH4 + 3CO2 + 2H2O) (Figure 2).

The process of electron transfer from a hydrogen producer to a 
methanogen via hydrogen as a vehicle was the first recognized case of 
interspecies electron transfer (IET) (Bryant et al., 1967). Direct IET 
(DIET) occurring via conducting pili or nanowires, or IET employing 
extracellular cytochromes that occur in other ecological systems 
(Lovley and Holmes, 2022) remains to be  investigated for rumen 
microbiome (Kelly et al., 2022). With fiber digestion by protozoa, a 
unique reductant transfer process is seen. Here, protozoa release 
excess reductant as H2 through hydrogenosome, a mitochondria-type 
organelle representing an ancient bacterial endosymbiont (Lewis et al., 
2020), which is captured directly by methanogens living syntrophically 
as protozoal endo- and ecto-symbiont (Vogels et al., 1980; Stumm and 
Zwart, 1986; Belanche et al., 2014). These symbiotic methanogens 
representing 10–20% of rumen methanogens contribute to 15–35% of 
ruminal methane production (Hegarty, 1999; Morgavi et al., 2008, 
2012). This association is non-specific in terms of a methanogen’s 
selectivity for protozoa type (Henderson et al., 2015).

Figure  2 shows alternate routes for hydrogen removal in the 
rumen with the respective thermodynamic potentials. Except for 
acetogenesis (4H2 + 2CO2 → CH3COO− + 2H2O + H+), which utilizes 

FIGURE 1

Ecophysiology and metabolic adaptation of rumen methanogens. A schematic diagram illustrating functional roles of methanogens that facilitate the 
continuation of rumen microbial fermentation by removal of H2 from microbial fermentation to generate methane. In the process, methanogens 
interact with different functional guilds via syntrophic associations and cross-feedings. Uptakes of nutrients and genetic materials via horizontal gene 
transfer (HGT) are shaping rumen methanogen metabolism, physiology, and lifestyle resulting in better adaptations and competitiveness in the rumen 
environment. Interactions between methanogens and other rumen microbiota are diverse and complex where methanogens are found as free-living, 
in a physical association or syntrophic relationship with other microbes, attach to the rumen epithelial cells as part of rumen epimural community, or 
ecto−/endosymbiosis with protozoa (right panel). Metabolic adaptation of methanogens in rumen environment (lower panel) results in loss of 
biosynthetic genes generating oligotrophy, acquisition of new functions through HGT, and physiological adaptation to methanogenic substrate 

fluctuations in the rumen (i.e., high and low 
2Hp  conditions following feeding) that have significant impacts on the emergence of CO2- and methyl-

reducing hydrogenotrophs (i.e., Ks and the deployment of different Mcr isozymes).
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readily available CO2, these alternate avenues are used only if the 
respective electron acceptors are available in the rumen. For example, 
the sulfate reduction pathway occurs only when the sulfate 
concentration in the rumen is sufficient (Huisingh et al., 1974).

3. Expanding concepts of rumen 
methanogens’ diversity, physiology, 
and metabolism

Methanogens account for less than 3.3% of the total rRNA gene 
sequences in bovine rumen (Patra et al., 2017) and the dominant 
rumen methanogens are rather conserved across geographical regions 
(Henderson et  al., 2015). Despite this relatively low abundance, 
methanogens have a major impact on microbial metabolism in this 
ecosystem for the reasons mentioned above. In this section, the 
diversity and methanogenesis or energy conservation processes of 
rumen methanogens are summarized and discussed.

3.1. Diversity

According to the taxonomic classification of the Genome 
Taxonomy Database (GTDB; Parks et  al., 2022), the methanogen 
phyla represented in the rumen microbiome are Halobacteriota (H), 
Methanobacteriota (M), and Thermoplasmatota (T) (Janssen and 

Kirs, 2008; Henderson et  al., 2015; Parks et  al., 2022). These 
methanogens belong to four orders (phyla): Methanobacteriales (M), 
Methanomicrobiales (H), Methanosarcinales (H), 
Methanomassiliicoccales (T). The reports of Methanococcales (M) 
especially from Methanocaldococcaceae family and Methanopyrales 
(M) phyla, representing hyperthermophiles, in rumen samples 
(Janssen and Kirs, 2008; Henderson et al., 2015; Tan et al., 2021) are 
likely artifactual, and Methanocellales (H) have never been found in 
rumen. The identification of Methanomassiliicoccales in the rumen as 
major utilizers of hydrogen via a non-CO2 reduction route reshaped 
the concept of hydrogenotrophy (Borrel et al., 2013, 2014; Li et al., 
2016; Kelly et al., 2016a,b; Garcia et al., 2022).

The rumen methanogen community is dominated by members 
of Methanobacteriales, especially from Methanobrevibacter and 
Methanosphaera genera, and those of Methanomassiliicoccales, 
with small contributions from Methanomicrobium and 
Methanosarcina genera (Henderson et  al., 2015). 
Methanobrevibacter gottschalkii, Methanobrevibacter 
ruminantium, Methanosphaera sp., and two 
Methanomassiliicoccaceae (formerly grouped as the rumen cluster 
C or RCC) comprise close to 90% of the total rumen methanogen 
rRNA gene sequences with Methanobrevibacter covering 74% of 
the total sequences and the rest 16% belonging to Methanosphaera 
sp. and Methanomassiliicoccaceae (Janssen and Kirs, 2008; 
Henderson et al., 2015). These abundance values, however, are 
dynamic and vary across hosts and diets, even though the core 
methanogen players are rather conserved (Henderson et al., 2015). 

FIGURE 2

Carbohydrate degradation in the reticulorumen (rumen) of ruminants. Microbial degradation of structural carbohydrates and fermentation of resulting 
sugar monomers generate fatty acids, acetate, propionate, and butyrate. H2 is generated from the electron confurcation of NADH and Fdxred during 
decarboxylation of pyruvate to generate acetyl-CoA. Generation of acetyl CoA from pyruvate can be performed by the actions of Pyruvate:Ferredoxin 
OxidoReductase (PFOR) or Pyruvate Formate Lyase (PFL). The H2 level is kept low by formate-dependent methanogenesis, CO2- and methyl-reducing 
hydrogenotrophs (superscripts a, b, and c, respectively), thus relieving the thermodynamic block on reoxidation of NADH and fermentation. Methyl-
dismutating and acetoclastic methanogenesis are not commonly found in the rumen (superscripts d and e, respectively). When available, sulfate, 
nitrate, and fumarate can be used as alternate hydrogen sinks, blue dashed-lined box. Blue and green [H], production and consumption of reducing 
equivalent or (NAD(P)H), respectively; black dashed-lines, multi-step pathway; black solid lines, process in the rumen; black dotted-lines, absorption of 
volatile fatty acids by rumen wall.
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Table  1 describes all known pure culture isolates of rumen 
methanogens and their key cellular characteristics. Some of these 
features are discussed below; energy metabolism is covered in 
Section 3.2.

3.1.1. Methanobacteriales
Members of this order reduce CO2 with H2 and some use formate, 

CO, and secondary alcohols as reductants (Liu, 2010a); 
Methanosphaera, an exception, reduce methanol with H2 (Miller and 
Wolin, 1985). Their cell walls contain an archaeal-type peptidoglycan 
composed of N-acetyltalosaminuronic acid with β-1,3 glycosidic 
bonds and L-amino acid peptide crosslinks (König and Kandler, 1979; 
Sprott and Beveridge, 1993). Most members are mesophiles, and the 
respective genera occur in the ruminant digestive tract (Liu and 
Whitman, 2008; Liu, 2010a; Lyu and Liu, 2019).

3.1.1.1. Methanobrevibacter (Mbb)
These methanogens are major contributors in rumen methane 

production (Janssen and Kirs, 2008, Henderson et  al., 2015). 
Approximately 74% of the 16S rRNA amplicons of rumen 
methanogens from rumen samples are affiliated with Mbb. gottschalkii 
and Mbb. ruminantium (Janssen and Kirs, 2008; Henderson et al., 
2015). Thus far, only a few rumen Methanobrevibacter species have 
been isolated from the rumen (Table  1) and they form two 
phylogenetic clades, smithii-gottschalkii-millerae-thaurei (SGMT) and 
ruminantium-olleyae (RO) (Table 1 and Figure 3; King et al., 2011). 
These clades’ abundance and distribution vary over hosts and diets 
(St-Pierre et al., 2015), with generally one clade dominating over the 
other (Wright et al., 2007; Yeoman and White, 2014; Seedorf et al., 
2015), and in only a few instances these exhibiting balanced 
abundances (Wright et  al., 2007; St-Pierre et  al., 2015). From a 
phylogenetic analysis that included Mbb. woesei, Mbb. wolinii, and 
Mbb. boviskoreani (Figure 3), we propose to expand the SGMT into 
the woesei-smithii-gottschalkii-millerae-thaurei (WSGMT) and form a 
new clade of boviskoreani-wolinii (BW), while retaining the RO clade 
(Figure 3).

Within the WSGMT clade, the presence of Mbb. smithii in the 
rumen system is questionable (Janssen and Kirs, 2008; Table 1 and 
Supplementary Table S1), as it was originally isolated from a sewage 
digester (Balch et al., 1979) and others were isolated from human 
feces and large intestine (Miller and Wolin, 1981; Miller et al., 1982). 
Rare detection of Mbb. smithii-like organisms in rumen have been 
based on the 16S rRNA sequence analysis (Supplementary Table S1). 
Methanobrevibacter species can produce methane from CO2-
reduction with H2 and formate. The genomes of rumen methanogens 
often lack essential biosynthetic genes, such as those for coenzyme 
M, perhaps due to gene loss from prototrophic ancestors (Figure 4, 
Section 3.3), and in the rumen, resulting auxotrophies are supported 
with supplements from other organisms, including other 
methanogens (Hazlewood and Dawson, 1977). These auxotrophies 
often make the laboratory cultivation of rumen Methanobrevibacter 
species quite tedious, since growth factor(s), such as coenzyme M, 
short-chain fatty acids, amino acids, acetate, and vitamins need to 
be provided (Bryant et al., 1971; Balch and Wolfe, 1976; Balch et al., 
1979; Miller and Lin, 2002; Rea et al., 2007; Lee et al., 2013; Table 1). 
Branched-chain volatile fatty acids, especially 2-methylbutyrate and 
isovalerate, are used for amino acid synthesis of isoleucine and 
leucine, respectively (Whitman et al., 1982; Shieh et al., 1988). In 

some cases, because of the unknown type auxotrophies, 
supplementation with rumen fluid is necessary (Bryant et al., 1971; 
Balch and Wolfe, 1976; Balch et al., 1979; Miller and Lin, 2002; Rea 
et al., 2007; Lee et al., 2013). Certain Methanobrevibacter species 
express adhesin-like proteins that likely allow symbiosis with ciliates 
and other hydrogen producers (Figure  4; Ng et  al., 2016; Patra 
et al., 2017).

3.1.1.2. Methanosphaera (Msp)
Msp. stadtmanae ISO3-F5 and Msp. BMS are the sole rumen 

isolates of the Methanosphaera genus (Jeyanathan, 2010; Hoedt et al., 
2018) and the former is closely related to the human fecal isolate Msp. 
stadtmanae MCB-3 (Miller and Wolin, 1985) with a 16S rRNA 
sequence similarity of 96% (Jeyanathan, 2010). Methanosphaera 
species are obligate H2-dependent methylotrophs (Miller and Wolin, 
1985; Jeyanathan, 2010). The genome sequence of Msp. BMS but not 
Msp. stadtmanae ISO3-F5 is available (Jeyanathan, 2010; Hoedt et al., 
2018). Rumen isolates require several growth factors, such as yeast 
extract, acetate, and fatty acids (Table 1). Msp. stadtmanae occurs in a 
free state as well as a symbiont of the rumen protozoa, Eudiplodinium 
and Entodinium (Tymensen et al., 2012; Xia et al., 2014).

3.1.1.3. Methanobacterium (Mb)
Mb. formicicum BRM9 is the rumen representative of this genus, 

and this cow rumen isolate uses H2 + CO2 and formate for 
methanogenesis (Jarvis et al., 2000). It requires yeast extract and fatty 
acids for growth (Table 1).

3.1.2. Methanomassiliicoccales
Methanomassiliicoccales order of the more recently recognized 

phyla of Candidatus Thermoplasmatota represent the second most 
abundant methanogen group after Methanobrevibacter in the rumen 
(Henderson et al., 2015). It is currently represented by five families, 
four genera, and one pure culture isolate, Methanomassiliicoccus 
luminyensis B10 of Methanomassiliicoccaceae family obtained from 
human feces (Dridi et  al., 2012). Methanomassiliicoccales are 
mesophiles and mostly associated with animal gastrointestinal tracts 
(Dridi et al., 2012; Li et al., 2016; Söllinger et al., 2016; Kelly et al., 
2016a,b; Cozannet et al., 2020). The strain B10 derives energy from 
H2-dependent methanogenesis from methylated compounds, such as 
methanol, methyl-, dimethyl-, and trimethylamine (Dridi et al., 2012; 
Li et al., 2016; Kelly et al., 2016a,b). Similar to Mycoplasma, which are 
cell wall deficient bacteria (Brown et al., 2018), Methanomassiliicoccales 
lack the archaeal S-layer cell wall and possess a bi-layer cell membrane 
(Dridi et al., 2012; Li et al., 2016), which in strain B10 contains unusual 
butane- and pentanetriol-based tetraether lipids (Becker et al., 2016).

There are reports on the enrichment of rumen 
Methanomassiliicoccales, and ISO4-H5, ISO4-G1, ISO4-G11, RumEn 
M1, and RumEn M2 are such examples (Kelly et al., 2016a,b; Li et al., 
2016; Söllinger et al., 2016). These isolates rely exclusively on H2-
dependent methyl-reducing methanogenesis for energy production 
(Kelly et al., 2016a,b; Li et al., 2016; Söllinger et al., 2016), and genome 
analysis suggests that ISO4-H5 and ISO4-G1 are coenzyme M 
auxotrophs (Li et al., 2016; Kelly et al., 2016a,b); the genome sequence 
of ISO4-G11 is not available (Jeyanathan, 2010) and that of RumEn 
M1 and RumEn M2 are incomplete (Söllinger et al., 2016). Further 
investigations on the physiology of these methanogens will require 
isolation in pure cultures.
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TABLE 1 Growth and nutritional requirements of select rumen-associated methanogens.

Methanogen species 
(culture depository)

Strain 
designation, 
isolated from

Substrate(s) for 
CH4 production 
[growth factor(s)]

Cell wall 
types

Optimum 
pH, T (°C)

Doubling time 
(h), medium, 
substrate

Lifestyle 
(endosymbiont, 
ectosymbiont, 
syntrophs)

GenBank ID, 
Gold project ID, 
Gold analysis 
project ID, 
Hungate1000 
collection 
number

References

Methanobrevibacter spp. [SGMT and RO Clade (King et al., 2011)]

Methanobrevibacter smithii 

(DSM 861, ATCC 35061)

PS, anaerobic sewage 

digester

H2 + CO2, formate 

[stimulatory – acetate]
PM 6.9–7.4, 39

6.7, BRN, H2/CO2 (80:20) 

12.7, BRN, formate 

(290 mM)

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_000016525, 

Gp0000134, Ga0029348, 

NA

Balch et al. (1979), 

Rea et al. (2007), 

Samuel et al. (2007), 

and Ng et al. (2016)

Methanobrevibacter smithii 

(DSM 2374)
F1, human feces

H2 + CO2, formate 

[required – trypticase, 

yeast extract]

PM ND ND NA

GCA_000151225, 

Gp0003674, Ga0029349, 

NA

Miller et al. (1982)

Methanobrevibacter smithii 

(DSM 2375)

ALI, human large 

intestine
NR [NR] NR ND ND NA

GCA_000151245, 

Gp0003638, Ga0029350, 

NA

Miller and Wolin 

(1981) and Miller 

et al. (1982)

Methanobrevibacter 

gottschalkii (DSM 11977)
HO, horse feces

H2 + CO2 [required – 

acetate, yeast extract, 

trypticase peptone]

PM 7.0, 37 ND

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_003814835, 

Gp0290545, Ga0244664, 

NonHun83

Miller and Lin (2002) 

and Ng et al. (2016)

Methanobrevibacter 

gottschalkii (DSM 11978)
PG, pig feces H2 + CO2 [NR] PM NR ND NA

GCA_900109595, 

Gp0127403, Ga0104357, 

HUN396

Lin and Miller (1998)

Methanobrevibacter millerae 

(DSM 16643)
ZA-10, bovine rumen

H2 + CO2, formate 

[required – acetate, yeast 

extract, trypticase 

peptone] [stimulatory 

– valerate, isovalerate, 

2-methylbutyrate, 

isobutyrate]

PM 7.0–8.0, 39

5.4, BRN, H2/CO2 (80:20) 

14.6, BRN, formate 

(150 mM)

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_900103415, 

Gp0087971, Ga0007632, 

HUN273

Rea et al. (2007) and 

Ng et al. (2016)

Methanobrevibacter millerae 

(NA)
SM9, sheep rumen

H2 + CO2, formate 

[required – acetate, yeast 

extract, trypticase 

peptone]

PM ND ND

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_001477655, 

Gp0007703, Ga0104112, 

NonHun84

Kelly et al. (2016c) 

and Ng et al. (2016)

Methanobrevibacter thaurei 

(DSM 11995)
CW, cattle feces

H2 + CO2 [required – 

acetate, yeast extract, 

trypticase peptone]

PM 7.0, 37 ND

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_003111625, 

Gp0113775, Ga0074444, 

NonHun89

Miller and Lin (2002) 

and Ng et al. (2016)

(Continued)
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(Continued)

TABLE 1 (Continued)

Methanogen species 
(culture depository)

Strain 
designation, 
isolated from

Substrate(s) for 
CH4 production 
[growth factor(s)]

Cell wall 
types

Optimum 
pH, T (°C)

Doubling time 
(h), medium, 
substrate

Lifestyle 
(endosymbiont, 
ectosymbiont, 
syntrophs)

GenBank ID, 
Gold project ID, 
Gold analysis 
project ID, 
Hungate1000 
collection 
number

References

Methanobrevibacter 

ruminantium (DSM 1093, 

ATCC 35063)

M1, cattle rumen

H2 + CO2, formate 

[required – acetate, 

2-methylbutyrate, amino 

acids (most stimulating T, 

H, M), coenzyme M]

PM 6.3–6.8, 39

16.8, BRN, H2/CO2 (80:20)

29.4, BRN, formate 

(150 mM)

Ectosymbiont of protozoa of 

genera Epidinium and 

Endodinium, and with H2-

producing bacteria 

Butyrivibrio proclasticus 

through the production of 

an adhesin-like protein

GCA_000024185, 

Gp0002311, Ga0029347, 

NonHun86

Bryant et al. (1971), 

Balch and Wolfe 

(1976), Balch et al. 

(1979), Rea et al. 

(2007), Leahy et al. 

(2010), and Ng et al. 

(2016)

Methanobrevibacter olleyae 

(DSM 16632)

KM1H5-1P, sheep 

rumen

H2 + CO2, formate 

[required – acetate]
PM 7.5, 39

14.5, BRN, H2/CO2 (80:20)

15.3, BRN, formate 

(220 mM)

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_900114585, 

Gp0087972, Ga0007633, 

HUN274

Rea et al. (2007) and 

Ng et al. (2016)

Methanobrevibacter 

boviskoreani (DSM 25824)
JH1, cattle rumen

H2 + CO2, formate 

[required – yeast extract, 

coenzyme M, and fatty 

acids (valerate, isovalerate, 

2-methylbutyrate, 

isobutyrate)]

PM 6.5–7.0, 37–40 ND NA

GCA_000320505, 

Gp0035818, Ga0021326, 

NonHun82

Lee et al. (2013)

Methanobrevibacter woesei 

(DSM 11979)
GS, goose feces

H2 + CO2, formate 

[required – acetate, yeast 

extract, trypticase 

peptone]

PM 7.0, 37 ND NA

GCA_003111605, 

Gp0113776, Ga0074445, 

NonHun90

Miller and Lin (2002)

Methanobrevibacter wolinii 

(DSM 11976)
SH, sheep feces

H2 + CO2 [required – 

acetate, yeast extract, 

trypticase peptone, 

coenzyme M, and fatty 

acids (valerate, isovalerate, 

2-methylbutyrate, 

isobutyrate)]

PM 7.0, 37 ND NA

GCA_000621965, 

Gp0047017, Ga0005592, 

HUN166

Miller and Lin (2002)

Methanosphaera spp.

Methanosphaera stadtmanae 

(DSM 3091, ATCC 43021)
MCB-3, human feces

H2 + methanol [required 

– acetate, amino acids (L, 

I), thiamin] [stimulatory 

– biotin]

PM 6.5–6.9, 36–40 ND

[potentially] ectosymbiont 

through the production of 

adhesin-like protein

GCA_000012545, 

Gp0000406, Ga0029374, 

NA

Miller and Wolin 

(1985) and Ng et al. 

(2016)
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Methanogen species 
(culture depository)

Strain 
designation, 
isolated from

Substrate(s) for 
CH4 production 
[growth factor(s)]

Cell wall 
types

Optimum 
pH, T (°C)

Doubling time 
(h), medium, 
substrate

Lifestyle 
(endosymbiont, 
ectosymbiont, 
syntrophs)

GenBank ID, 
Gold project ID, 
Gold analysis 
project ID, 
Hungate1000 
collection 
number

References

Methanosphaera stadtmanae 
(NA)

ISO3-F5, sheep rumen

H2 + methanol [required 
– acetate, yeast extract] 
[stimulatory – fatty acids 
(valerate, isovalerate, 
2-methylbutyrate, 
butyrate, isobutyrate, 
propionate)]

PM 6.7–6.8, 39 ND NA NA Jeyanathan (2010)

Methanosphaera stadtmanae 
(NA)

BMS, bovine rumen
H2 + methanol [required 
–yeast extract, casein 
hydrolysate, rumen fluid]

PM 6.7, 37 ND NA
GCA_003268005, 
Gp0119560, Ga0105677, 
NA

Hoedt et al. (2018)

Methanomicrobium spp.

Methanomicrobium mobile 
(DSM 1539, ATCC 35094)

BP, cattle rumen

H2 + CO2, formate 
[required – yeast extract or 
vitamin-free casamino 
acid, acetate, isovalerate, 
2-methylbutyrate, 
isobutyrate, indole, 
pyridoxine, thiamine, 
biotin, cobalamin, PABA, 
boiled cell extract of 
Methanothermobacter 
thermautotrophicus, 
coenzyme B]

RS-layer 6.1–6.9, 40 ND

Found in association with 
protozoa of genera 
Entodinium, Metadinium, 
and Ophryoscolex

GCA_000711215, 
Gp0047018, Ga0005617, 
HUN195

Paynter and Hungate 
(1968), Balch et al. 
(1979), Tanner and 
Wolfe (1988), Kuhner 
et al. (1991), Sprott 
and Beveridge (1993), 
Regensbogenova et al. 
(2004), and Seshadri 
et al. (2018)

Methanobacterium spp.

Methanobacterium bryantii 
(DSM 863, ATCC 33272)

M.o.H., anaerobic 
sewage digester

H2 + CO2 [stimulatory 
– acetate, cysteine, and 
B-vitamins (most 
stimulating biotin, folate, 
cobalamin)]

PM 6.9–7.2, 37–39 ND NA
GCA_002287175, 
Gp0322642, Ga0308562, 
NA

Bryant et al. (1971) 
and Balch et al. (1979)

Methanobacterium formicicum 
(NA)

BRM9, cow rumen
H2 + CO2, formate 
[required – yeast extract, 
rumen fluid]

PM 6.5–7.0, 39
2.6, RF30, H2/CO2 
(80:20)

NA
GCA_000762265, 
Gp0007264, Ga0069308, 
NonHun80

Jarvis et al. (2000) and 
Kelly et al. (2014)

Methanosarcina spp.

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Methanogen species 
(culture depository)

Strain 
designation, 
isolated from

Substrate(s) for 
CH4 production 
[growth factor(s)]

Cell wall 
types

Optimum 
pH, T (°C)

Doubling time 
(h), medium, 
substrate

Lifestyle 
(endosymbiont, 
ectosymbiont, 
syntrophs)

GenBank ID, 
Gold project ID, 
Gold analysis 
project ID, 
Hungate1000 
collection 
number

References

Methanosarcina barkeri (NA) CM1, cow rumen

H2 + CO2, methanol, 

methylamine, 

trimethylamine, acetate 

[required – rumen fluid]

MC + S-layer 6.5, 39
5.4, RF30, H2/CO2 

(80:20)
NA

GCA_001027005, 

Gp0007672, Ga0077912, 

NonHun91

Jarvis et al. (2000)

Methanosarcina thermophila 

(DSM 11855)
Ms97, sheep rumen

H2 + CO2, methanol, 

[required – yeast extract, 

rumen fluid]

MC + S-layer 6.5–6.8, 50 NA NA

GCA_900116525, 

Gp0087973, Ga0007631, 

HUN272

Seshadri et al. (2018) 

and Zhou et al. (2021)

Methanomassiliicoccaceae

Methanomassiliicoccaceae 

Group 12 (NA)
ISO4-H5, sheep rumen

H2 + methanol/mono−/

di−/trimethylamine 

[required – yeast extract, 

acetate, formate, rumen 

fluid, coenzyme M]

Bi-CM NR, 38–39 NA NA

GCA_001560915, 

Gp0125684, Ga0114162, 

NonHun78

Jeyanathan (2010) and 

Li et al. (2016)

Methanomassiliicoccaceae 

Group 11 (NA)
ISO4-G1, sheep rumen

H2 + methanol/mono−/

di−/trimethylamine 

[required – yeast extract, 

acetate, formate, rumen 

fluid, coenzyme M]

Bi-CM NR, 38–39 NA NA

GCA_001563305, 

Gp0139499, Ga0118695, 

NonHun77

Jeyanathan (2010), 

Kelly et al. (2016a,b)

Methanogenic archaeon (NA)
ISO4-G11, sheep 

rumen

H2 + methanol [required 

– yeast extract, acetate, 

formate, rumen fluid, 

coenzyme M]

Bi-CM NR, 38–39 NA NA NA Jeyanathan (2010)

Methanogenic archaeon (NA)
RumEn M1, cow 

rumen

H2 + trimethylamine 

[required – acetate, 

formate, rumen fluid]

Bi-CM NR, 37 NA NA
LJKK00000000, NA, NA, 

NA
Söllinger et al. (2016)

Methanogenic archaeon (NA)
RumEn M2, cow 

rumen

H2 + trimethylamine 

[required – acetate, 

formate, rumen fluid]

Bi-CM NR, 37 NA NA
LJKL00000000, NA, NA, 

NA
Söllinger et al. (2016)

NA, not available; ND, not determined; NR, not reported; PM, pseudomurein; RS, regularly structured; MC, methanochondroitin; Bi-CM, thin bi-layer cell membrane. BRN media, not specified (Rea et al., 2007); RF30 media, rumen fluid-containing BY medium 
(Jeyanathan, 2010); [potentially], genome contains gene homologs of adhesin-like protein.
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3.1.3. Methanomicrobiales
The species of this order representing eight families perform 

methanogenesis from CO2 with H2, formate, and secondary alcohol as 
electron sources (Zellner and Winter, 1987; Liu, 2010b). 
Methanomicrobium mobile BP, a bovine isolate that uses H2 + CO2 and 
formate (Paynter and Hungate, 1968) and belongs to the 
Methanomicrobiaceae family, is the only rumen representative of this 
order (Table  1). It constitutes only a small fraction of rumen 
methanogen population (Henderson et al., 2015) and forms symbioses 
with ciliates via an unknown mechanism (Regensbogenova et  al., 
2004). Mm. mobile has the most complex growth factor requirements 
among methanogens (Table 1); the nature of a factor that is called 
mobile element and could be provided from boiled cell extract of 
Methanothermobacter thermautotrophicus remains unknown (Tanner 
and Wolfe, 1988; Kuhner et al., 1991; Table 1).

3.1.4. Methanosarcinales
The rumen representatives of this order are Methanosarcina 

barkeri CM1 and Methanosarcina thermophila Ms97 that belong to the 
Methanosarcinaceae family (Table 1), and like other Methanosarcina, 
they are metabolically versatile and can utilize H2 and CO2, methylated 
compounds, such as methanol, methylamines, and methanethiol, and 
acetate, for methane production (Table 1; Rospert et al., 1990; Reeve, 
1992; Morgan et al., 1997; Reeve et al., 1997; Deppenmeier et al., 2002; 
Galagan et al., 2002; Maeder et al., 2006; Lambie et al., 2015). The 
rumen isolates require yeast extract and rumen fluids for growth 
(Table 1). While co-culture experiments show symbiotic interactions 
of a non-rumen isolate of Ms. barkeri with ruminal fungi and ciliates 
(Mountfort et al., 1982; Hillman et al., 1988; Ushida et al., 1997), no 
such information is available for a rumen Methanosarcina (Lambie 
et al., 2015).

3.1.5. Methanotrichales
Methanothrix species are the sole members of this order (Garrity 

et al., 2011) and are known to obtain energy solely from acetoclastic 
methanogenesis (Lyu and Liu, 2019; Akinyemi et al., 2021), although 
their genomes suggest a capability of CO2-reduction with H2 and CO 
as electron sources (Smith and Ingram-Smith, 2007). A low abundance 
of 16S rRNA gene sequences representing Methanothrix concilii have 
been detected in rumen samples (Henderson et al., 2015).

3.2. Energy metabolism and physiology

For energy production, methanogens rely on methanogenesis, and 
based on the methanogenic substrates utilized, these archaea are 
divided into three groups (substrate, group name): hydrogen and 
formate as electron donor for CO2 reduction (hydrogenotrophic and 
formate-dependent, respectively); methyl-containing compounds and 
acetate as sources of both methyl group and electron source 
(methylotrophic and acetoclastic, respectively) (Wolfe, 1992). 
However, for the recently emphasized role of methanogens that 
remove H2 via methyl group reduction in the rumen, human gut, and 
many other ecological niches, the definition of hydrogenotrophic 
methanogenesis has been expanded to the following 
(hydrogenotrophic pathway, associated methanogens): CO2-reducing 
hydrogenotrophy (CO2-reducing hydrogenotrophs) and methyl-
reducing hydrogenotrophy (methyl-reducing hydrogenotrophs) 

(Garcia et  al., 2022; Bueno de Mesquita et  al., 2023). Similarly, 
methanogenesis from CO2 with formate and secondary alcohols as 
reductants, where the electrons are recovered from the primary donor 
as F420H2 (Thauer et al., 2008; Yan and Ferry, 2018) could be called 
formate-dependent and secondary alcohol-dependent 
methanogenesis, respectively; for the former, CO2-reducing 
formatotrophic name has also been proposed (Garcia et al., 2022). In 
the following subsections, each of the methanogenesis pathways and 
the corresponding energy conservation strategies are described and 
linked to the rumen methanogens that employ them.

3.2.1. CO2-reducing hydrogenotrophy and 
formate-dependent methanogenesis

CO2-reducing hydrogenotrophy (Figure  5) is one of the most 
ancient respiratory metabolisms on Earth (Leigh, 2002; Teske et al., 
2003). Here, CO2 is first reduced to a formyl group, which is 
dehydrated to methenyl and then sequentially reduced to methylene 
and methyl groups and finally, to methane (Figure  5); three 
coenzymes, methanofuran (MFR), tetrahydromethanopterin 
(H4MPT), and coenzyme M (CoM-SH or CoM) act as carriers for the 
carbon units at four oxidation states (+4, +2, 0, and − 2) (Wolfe, 1992). 
Reduced coenzyme F420 (F420H2), generated by an F420-reducing 
[NiFe]-hydrogenase (Frh) with H2, serves as a direct electron donor 
for the reduction of methenyl and methylene forms. Coenzyme B 
(CoB-SH or CoB) helps to reduce the methyl group of CH3-S-CoM to 
CH4, and this process generates heterodisulfide of CoM and CoB 
(CoM-S-S-CoB) (Wolfe, 1992; Thauer et al., 2010; Thauer, 2012).

In CO2-hydrogenotrophic methanogens without cytochromes 
such as Methanobrevibacter, the only site for energy conservation is 
the sodium translocating membrane-associated methyl-H4MPT:CoM 
methyltransferase complex composed of MtrA–H subunits (Figure 5; 
Thauer et al., 2008) and heterodisulfide reduction occurs as follows. A 
cytoplasmic complex composed of heterodisulfide reductase 
(HdrABC), non-F420-reducing hydrogenase (MvhADG), and formyl-
methanofuran dehydrogenase (FmdABCDFG or FwdABCDFG) 
retrieves electrons from H2 (Eo’, −420 mV), and bifurcates these using 
the FAD unit of HdrA to provide high potential electrons for the 
reduction of CoM-S-S-CoB (Eo’, −140 mV) at HdrB and low potential 
electrons for formyl-MFR synthesis from CO2 (Eo’, −500 mV) (Costa 
et al., 2010; Yan and Ferry, 2018; Watanabe et al., 2021; Figure 5); Fmd 
and Fwd are molybdo- and tungsto-pterin carrying isoenzymes of 
formyl-methanofuran dehydrogenase, respectively (Schmitz et  al., 
1992). For methanogenesis with formate, as discussed below, the 
MvhADG unit is replaced with F420-reducing formate dehydrogenase 
(FdhAB) that can obtain electrons from either formate using FdhA or 
F420H2 via FdhB (Costa et al., 2010; Watanabe et al., 2021). The direct 
electronic coupling of the first (formyl-methanofuran synthesis) and 
last (CoM-S-S-CoB reduction) steps of methanogenesis generates a 
cyclic system that has been called the Wolfe Cycle, named after Ralph 
Wolfe (Rouvière and Wolfe, 1988; Thauer, 2012; Figure 5). When the 
electron bifurcation falls short, an energy-converting hydrogenase 
(Eha) provides low potential electrons for formyl-MFR synthesis via 
a ferredoxin, serving an anaplerotic function (Figure 5; Lie et al., 2012).

For methanogens with cytochromes, electrons derived from H2 by 
the action of a membrane-bound and proton pumping VhoAGC 
hydrogenase complex are channeled to HdrDE for CoM-S-S-CoB 
reduction, and the low-potential Fdxred that are needed for 
formyl-MFR synthesis are generated via another membrane-bound 
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hydrogenase complex (EchA-F) that is aided by a proton-motive force 
(Thauer et  al., 2008). Thus, a cytochrome carrying CO2-
hydrogenotroph such as Methanosarcina has two sites of energy 
conservation, Mtr and VhoAGC (Thauer et al., 2008).

Under standard conditions, the hydrogenotrophic mode is the 
most exergonic of all methanogenesis systems (ΔG°′ = −135 kJ/mol 
CH4) (Figure 5). However, under the rumen conditions (hydrogen 
partial pressure or 

2H
p ), 162 Pa (Barry et al., 1977; Ungerfeld and 

Kohn, 2006), the prevailing ΔG’ value of the hydrogenotrophic 
methane formation reaction is only −67.4 kJ/mol CH4 (Ungerfeld and 
Kohn, 2006) and yet, Mbb. ruminantium and Mbb. gottschalkii 
together represent as high as 74% of the total archaeal community 
(Henderson et  al., 2015). It has been suggested that the flavin-
dependent bifurcation system producing a low potential reduced Fdx 
pool is a key tool for a methanogen living under low 

2H
p  (Yan and 

Ferry, 2018).
The genome of Mbb. ruminantium strain M1 carries all the genes 

necessary for methane production from H2 and CO2 (Leahy et al., 
2010). It also carries a locus with genes for a formate transporter 
(fdhC, mru_0332), a formate dehydrogenase (fdhAB, mru_0333 and 
mru_0334), and genes encoding molybdopterin-guanine dinucleotide 
biosynthesis (moa, mru_0335 and mru_0336), enabling the organism 
to transport and oxidize formate; formate dehydrogenase contains a 
molybdopterin cofactor (May et al., 1986; Reeve, 1993).

There are indications that various groups of Methanobrevibacter 
use two different isoenzymes of methyl-coenzyme M reductase 
(Mcr) which catalyzes methane production from CH3-S-CoM 
(Figure  5). This difference has a major implication for their 
hydrogen metabolism (Reeve, 1992; Bonacker et al., 1993). The Mcr 
isoenzymes, Mcr I and McrII, encoded by the mcr and mrt genes, 
respectively, are considered physiologically adapted to function at 
low and high 

2H
p  values (Rospert et al., 1990; Reeve et al., 1997). 

Mbb. ruminantium M1, a RO group organism, with mcrBCDGA 
genes encodes only McrI (Leahy et al., 2010). Of the rumen isolates 
from the WSGMT group, only for Mbb. millerae SM9’s complete 
genome sequence is available, and it carries both mcr and mrt genes 
(Kelly et al., 2016c).

3.2.2. Methyl-reducing hydrogenotrophy
In this process, the methyl group from methylated compounds, 

such as methanol, methylamine, and methanethiol are transferred to 
CoM to form methyl-CoM which is then reduced to methane by Mcr 
(Figure 5), and H2 serves as the primary electron source for CoM-S-
S-CoB reduction (Figure 5; Keltjens and Vogels, 1993). In the rumen, 
only methanol and methylamines (either mono-, di-, or 
trimethylamines), but not methanethiol, are available for this 
metabolism (Miller and Wolin, 1985; Fricke et al., 2006; Jeyanathan, 
2010; Henderson et al., 2015; Kelly et al., 2016a,b; Li et al., 2016).

FIGURE 3

Phylogeny of rumen methanogenic archaea. A 16S ribosomal RNA (rRNA) gene sequence-based phylogenetic tree was constructed via a distance-
based phylogeny inference algorithm at NGPhylogeny webserver (https://ngphylogeny.fr/) (Desper and Gascuel, 2002; Criscuolo and Gribaldo, 2010; 
Junier and Zdobnov, 2010; Katoh and Standley, 2013; Lefort et al., 2015; Lemoine et al., 2018) with Desulfurococcus amylolyticus Z-1312 16S rRNA 
gene sequence as an outgroup (not shown). Black dots at the branches, confidence values of ≥700 (out of 1,000 replicates). Scale bar, number of base 
substitutions per site. Mode of methanogenesis substrate use (as shown in Figure 5): black, CO2-reduction or formate-dependent; red, methyl-
reduction with H2; blue, Methyl-dismutating; yellow, acetoclastic. Highlighted in green, rumen-associated methanogens. Sources of information in the 

H+/Na+ translocating system and 
2Hp  threshold: (Deppenmeier, 2004; Thauer et al., 2008; Sakai et al., 2011; Ver Eecke et al., 2012; Welte and 

Deppenmeier, 2014; Kulkarni et al., 2018; Kröninger et al., 2019; Mand and Metcalf, 2019; Feldewert et al., 2020; Kurth et al., 2020, 2021; Downing 
et al., 2023). For, formate; MeOH, methanol; Me, methanol and mono-, di-, and trimethylamines; Ac, acetate; Mtr, methyl-
tetrahydromethanopterin:coenzyme M methyltransferase; HdrDE, membrane-bound heterodisulfide reductase; Ech, energy-conserving hydrogenase; 
Ehb, a homolog of energy-conserving hydrogenase; Fpo, F420H2:phenazine oxidoreductase; Fpo*, Fpo in the absence of the F and O subunits; Vht, 
[NiFe] hydrogenase; Rnf, an equivalent of Rhodobacter nitrogen fixation complex; Mcr, methyl-coenzyme M reductase; cyt, cytochrome; √, 
cytochrome-containing; ×, cytochrome-non-containing.
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The ΔGo’ value for this process under standard conditions is 
−113 kJ/mol CH4, making it the second most exergonic 
methanogenesis process (Figure 5). The ΔG’ values under rumen 
conditions, however, have not been reported and would be variable as 
methanol and methylamine concentrations are dependent on the host 
diet, and 

2H
p  also varies (Henderson et  al., 2015). The methyl-

hydrogenotrophs constitute about 16% of the rumen archaeal 
community and along with CO2-hydrogenotrophs and formate-
utilizers, these organisms cover close to 90% of the methanogens in 
this habitat (Henderson et al., 2015). These methyl-hydrogenotrophic 
rumen methanogens belong to Methanosphaera sp. and two 
Methanomassiliicoccales-affiliated groups (Miller and Wolin, 1985; 
Fricke et al., 2006; Jeyanathan, 2010; Henderson et al., 2015; Li et al., 
2016; Kelly et al., 2016a,b); Methanosarcina, which also can perform 
methyl-hydrogenotrophy (Mukhopadhyay et  al., 1993) are rarely 
encountered in the rumen (Henderson et al., 2015).

The metabolic potential of Msp genus was inferred from the 
genome sequence analyses of a human fecal isolate, Msp. stadtmanae 
MCB-3 (Fricke et al., 2006), and that of rumen strain BMS (Hoedt 
et al., 2018). Genome analysis of MCB-3 showed that it lacks the genes 
for the biosynthesis of molybdopterin, an essential prosthetic group 
of formylmethanofuran dehydrogenase (Fmd), making the organism 
incapable of activating CO2 to the formyl stage and performing CO2-
hydrogenotrophic methanogenesis (Fricke et al., 2006; Figure 5). The 
organism also lacks the genes for the synthesis of acetyl-CoA 
decarbonylase/synthase complex, which explains the requirement of 
acetate for its growth and its inability to utilize acetate for 
methanogenesis (Miller and Wolin, 1985). All these phenotypes have 
been observed in the rumen strains ISO3-F5 and BMS (Jeyanathan, 
2010; Hoedt et al., 2018) which relies solely on H2 and methanol for 
methane production (Jeyanathan, 2010; Hoedt et al., 2018; Figure 5). 
Based on the presence of mrt and absence of mcr in the genome of 

MCB-3, it is inferred that the ISO3-F5 strain uses McrII (Fricke et al., 
2006; Jeyanathan, 2010), which likely operates at high 

2H
p  values 

(Rospert et  al., 1990). The growth of BMS strain was also greatly 
enhanced at high 

2H
p , suggesting a dependence on McrII as well 

(Figure 5; Hoedt et al., 2018). The energy conservation system in 
Methanosphaera relies on the generation of reduced Fdx by the 
electron bifurcating HdrABC/MvhADG complex, and the free energy 
of the reduced Fdx is used for sodium ion translocation via membrane-
bound energy-conserving hydrogenase (Ehb) complex (Fricke et al., 
2006; Thauer et al., 2008; Yan and Ferry, 2018).

The genomes of Methanomassiliicoccales strains ISO4-H5, 
ISO4-G1, RumEn M1, and RumEn M2 (Jeyanathan, 2010; Li et al., 
2016; Söllinger et al., 2016; Kelly et al., 2016a,b) lack the genes for 
many of the enzymes that are required to reduce CO2 to the methyl 
stage or to oxidize the methyl group of methyl-CoM to CO2 that could 
provide reductants for methyl-coenzyme M reduction (Lang et al., 
2015; Li et  al., 2016; Söllinger et  al., 2016; Kelly et  al., 2016a,b; 
Figure  5). Consequently, members of the Methanomassiliicoccales 
order are restricted to methyl-hydrogenotrophy; as mentioned above, 
for Methanosphaera species, such a restriction is due to a narrower 
reason, an inability to biosynthesize the molybdopterin cofactor 
for Fmd.

Above-mentioned rumen methanogens of the 
Methanomassiliicoccales order contain a F420H2:MP oxidoreductase-
like (Fpo-like) complex and this could translocate protons for energy 
conservation (Lang et al., 2015; Li et al., 2016; Söllinger et al., 2016; 
Kelly et al., 2016a,b). However, they lack the genes for coenzyme F420, 
cytochrome, MP biosynthesis, and FpoF and FpoO subunits (Li et al., 
2016; Söllinger et  al., 2016; Kelly et  al., 2016a,b) which in a Fpo 
complex of Methanosarcina species interact with F420H2 and MP, 
respectively (Welte and Deppenmeier, 2011); RumEn M2 strain also 
lacks the FpoA subunit (Söllinger et al., 2016). These genomes encode 

FIGURE 4

Unique genomic features of rumen methanogens. Genomic features: mcr and mrt, McrI and McrII isozymes of methyl-CoM reductase, respectively; 
fdhAB, two subunits of formate dehydrogenase as utilized for formate utilization; comADE and fbiC, CoM and F420 biosynthetic genes; pylBCD, genes 
encoding pyrrolysine biosynthesis enzymes; pylT, transfer RNA for pyrrolysine (tRNAPyl); pylS, pyrrolysyl-tRNA synthetase (PylRS); *, total number of 
adhesin-like protein; NS, not specified. The data are from Jeyanathan (2010), Leahy et al. (2010, 2013), Kelly et al. (2014, 2016a,b,c), Lambie et al. (2015), 
Li (2016), and Li et al. (2016).
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MvhADG, HdrABC, and HdrD but not HdrE (Lang et al., 2015; Li 
et al., 2016; Kelly et al., 2016a,b). Thus, it is possible that in rumen 
representatives of the Methanomassiliicoccales order, the Fpo-like 
complex couples the oxidation of bifurcation-derived reduced Fdx to 
the formation of a proton gradient (Kröninger et  al., 2019). 
Methanomassiliicoccales carry mrt genes and lack the mcr system (Li 
et al., 2016; Kelly et al., 2016a,b), and therefore, utilize McrII which is 
known to operate at higher 

2H
p  values (Rospert et al., 1990; Reeve, 

1992; Reeve et al., 1997); as mentioned above, a similar situation exists 
with the Methanosphaera spp.

3.2.3. Methylotrophic (or methyl-dismutating) 
and acetoclastic methanogenesis

Recently the term methyl-dismutating methanogenesis has been 
proposed as an alternate for methylotrophic methanogenesis (Garcia, 
Gribaldo et al., 2022). As the former embodies the mechanism of the 
process (Wolfe, 1992), we use this term for the rest of the narrative. 
Methyl-dismutating and acetoclastic methanogenesis are not 
significant processes in the rumen and the associated methanogens, 
Methanosarcina and Methanothrix species, are rarely encountered in 
this system (Hungate et al., 1970; Janssen and Kirs, 2008; Henderson 

et  al., 2015; Seshadri et  al., 2018); Ms. barkeri CM1 and Ms. 
thermophila Ms97 are the two rumen isolates (Lambie et al., 2015; 
Zhou et al., 2021). Methanosarcina species carry the mcr system and 
lack mrt genes (Deppenmeier et al., 2002; Galagan et al., 2002; Maeder 
et al., 2006; Lambie et al., 2015), hence these methanogens employ 
McrI that has been postulated to operate under low 

2H
p  conditions 

(Rospert et al., 1990; Reeve, 1992; Morgan et al., 1997; Reeve et al., 
1997). Methanothrix spp. carry the mrt system that generates Mcr II 
(Barber et al., 2011; Zhu et al., 2012).

In methyl-dismutating methanogenesis, one-fourth of the 
available methyl groups are oxidized, generating F420H2 and reduced 
Fdx which in turn allows the reduction of the rest of the methyl groups 
to methane, (4CH3X + H2O → 3CH4 + CO2; X = −OH, −NH3, and −
SH) (Figure 5; Deppenmeier et al., 1996; Deppenmeier, 2004; Buan 
and Metcalf, 2010; Yan and Ferry, 2018). Following are the ΔGo’ values 
(kJ/mol CH4) for this process with the indicated substrates: −105 
(methanol), −74 (trimethylamine), and − 49 (dimethylsulfide) 
[Figure 5; see reference (Liu and Whitman, 2008) for a comprehensive 
list]. The electrons from reduced Fdx, originating from the oxidation 
of formyl-MFR, are bifurcated to reduce CoM-S-S-CoB and to 
generate F420H2 (Deppenmeier et al., 1996; Deppenmeier, 2004; Buan 

FIGURE 5

The methanogenesis cycle, energy conservation, and associated standard free energy changes. The cycle is first proposed by Rouvière and Wolfe 
(1988) and subsequent discovery in flavin-based electron bifurcation (FBEB) makes the cycle full circle (Thauer, 2012; Watanabe et al., 2021). Pathway 
arrow colors: black, CO2-reducing hydrogenotrophic or formate-dependent methanogenesis (Wood et al., 2003; Costa et al., 2010; Thauer, 2012); red, 
blue, and orange, methyl-reducing hydrogenotrophic, methyl-dismutating, and acetoclastic, respectively (Welander and Metcalf, 2005; Kurth et al., 
2020). The FBEB complex which consists of Mvh-Hdr-Fmd/Fwd or Fdh-Hdr-Fmd/Fwd is proposed to be a common structure in CO2-reducing or 
formate-dependent methanogens without cytochromes (Watanabe et al., 2021). Values for standard free energy changes are taken from Liu and 
Whitman (2008) or calculated from Thauer et al. (1977). Fdxred, reduced ferredoxin; Fdxox, oxidized ferredoxin; MFR, methanofuran; H4MPT, 
tetrahydromethanopterin; MP, methanophenazine; CoB-SH or CoB, coenzyme B; CoM-SH or CoM, coenzyme M; Fmd, molydopterin containing 
formyl-MFR dehydrogenase; Ftr, formyl-MFR:H4MPT formyltransferase; Mch, methenyl-H4MPT cyclohydrolase; Mtd, methylene-H4MPT 
dehydrogenase; Hmd, H2-dependent methylene-H4MPT dehydrogenase; Mer, methylene-H4MPT reductase; Mtr, methyl-H4MPT:CoM 
methyltransferase; Mcr, methyl-CoM reductase; Hdr, electron bifurcating hydrogenase-heterodisulfide reductase complex; HdrABC, soluble 
heterodisulfide reductase; HdrDE, membrane-bound heterodisulfide reductase; Mvh, non-F420-reducing hydrogenase; Frh, F420-reducing hydrogenase; 
Mta, methylcobamide:CoM methyltransferase; Mtm, monomethylamine methyltransferase; Acs, acetyl-CoA synthase; Ack, acetate kinase; Pta, 
phosphotransacetylase; ACDS, acetyl-CoA decarbonylase/synthase; Fdh, formate dehydrogenase; Eha, a homolog of energy-conserving hydrogenase; 
Vho, methanophenazine-dependent hydrogenase; ΔμNa+, electrochemical sodium ion potential.
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and Metcalf, 2010; Yan and Ferry, 2018); F420H2 is also generated from 
the oxidation of methyl- and methylene-H4SPT (H4SPT, 
tetrahydrosarcinapterin, a variation of H4MPT). Then a FpoA-O 
complex couples the oxidation of F420H2 to proton translocation and 
also provides additional reductants for CoM-S-S-CoB reduction via 
methanophenazine (MP) and HdrDE (Deppenmeier et  al., 1996; 
Deppenmeier, 2004; Buan and Metcalf, 2010; Yan and Ferry, 2018). 
Additional energy is generated by a Frh-based H2 cycling system that 
retrieves electrons from F420H2 via Frh and produces H2 and H+ 
gradient; the internally produced H2 diffuses out and is oxidized at the 
extra cytoplasmic location via VhtAGC to generate electrons that are 
transported to HdrDE via MP for heterodisulfide reduction (Kulkarni 
et al., 2018; Mand and Metcalf, 2019).

Of all types of methanogenesis, the acetoclastic mode has the least 
negative ΔGo’ value (−33 kJ/mol CH4) (Figure 5). Here, the methyl 
group of acetate is transferred to H4SPT for further processing, 
generating methane, CoM-S-S-CoB, and a Na+-motive force, and the 
oxidation of the carboxyl group provides reduced Fdx (Yan and Ferry, 
2018). The reduced Fdx is utilized by the Rnf complex (equivalent of 
Rhodobacter nitrogen fixation complex) in two ways: first, Fdx2− is 
oxidized employing cytochrome and the above-described MP- and 
HdrDE-mediated steps causing proton translocation and CoM-S-
S-CoB reduction (Yan and Ferry, 2018; Mand and Metcalf, 2019); 
second, two Fdx2− are processed with two oxidized F420, promoting 
sodium ion translocation and the resulting F420H2 are used by 
HdrA2B2C2 for the reduction of CoM-S-S-CoB and the production 
of Fdx2− (Yan et al., 2017; Buckel and Thauer, 2018; Yan and Ferry, 
2018). In both cases, a Na+/H+ antiporter adjusts the respective 
gradients for optimal ATP synthesis (Deppenmeier et  al., 2002; 
Galagan et al., 2002; Maeder et al., 2006; Lambie et al., 2015; Yan and 
Ferry, 2018). A H2 cycling system similar to that described above for 
methyl-dismutating methanogenesis but with electrons derived from 
Fdx2− via Ech, provides an additional avenue for energy production 
(Barber et al., 2011; Zhu et al., 2012; Kulkarni et al., 2018; Mand and 
Metcalf, 2019).

3.2.4. Sources of methanogenesis substrates in 
rumen

The source of H2, formate, and acetate is predominantly 
carbohydrate fermentation as detailed above (Figure 2). Methanol is 
generated from de-esterification of methoxylated form of pectin, 
which is a polysaccharide component of the plant cell wall composed 
of alpha-1,4-galacturonic acid (Mitchell et al., 1979; Patterson and 
Hespell, 1979; Pol and Demeyer, 1988). This reaction is catalyzed by 
pectinase produced by Butyrivibrio, Prevotella, Bacteroides, 
Ruminococcus, and Fibrobacter species (Comtet-Marre et al., 2017; 
Sollinger et al., 2018; Kelly et al., 2019); fungi, protozoa or associated 
bacteria also hydrolyze pectin (Wright, 1960). Degradation of choline 
and betaine, that are present in the feed (Mitchell et al., 1979; Patterson 
and Hespell, 1979; Pol and Demeyer, 1988) by choline-TMA lyase and 
betaine reductase, respectively, provides trimethylamine (TMA) 
(Craciun and Balskus, 2012; Rath et al., 2019). In the rumen, the 
choline-TMA lyase gene occurs in Desulfovibrio, Clostridia, 
Streptococcus, Klebsiella, and Proteus species (Craciun and Balskus, 
2012) and betaine reductase is likely provided by Eubacterium, 
Clostridium, and various members of the Firmicutes (Naumann et al., 
1983; Hormann and Andreesen, 1989; Rath et al., 2019). A recent 
study has provided the following values for the methyl-group 

containing substrate concentrations (μM) in bovine rumen fluid (Bica 
et al., 2022): methanol, 23–26; methylamine, 12–16; dimethylamine, 
1.8–2.1; and trimethylamine, 1.6–2; the values were not significantly 
different across different diets. An earlier study in cattle and sheep 
rumens reported that the concentration of methylamine increases 
steadily during the 6–8 h period post-feeding and then decreases 
rapidly (Hill and Mangan, 1964). After an additional 5 h, methylamine 
was absent from the rumen and this status remained for a 24 h period 
that followed (Hill and Mangan, 1964). These data are consistent with 
a rapid utilization of methyl-group containing substrates by the 
methyl-hydrogenotrophs under the high 

2H
p  condition following 

feeding (Sollinger et al., 2018).

3.3. Metabolic inferences from genome 
sequences

Identification of several gastrointestinal tract (GIT)- and rumen-
associated microbes with reduced genome sizes that are smaller than 
that of the same species from non-host-associated niches suggest that 
nutrient-abundant nature of animal digestive tracts have facilitated 
genome streamlining events in these organisms (Walter and Ley, 2011; 
Söllinger et al., 2016). In some cases, GIT and rumen microorganisms 
gained additional genes (Leahy et al., 2013; Kelly et al., 2016c; Söllinger 
et al., 2016). For example, Mbb. smithii PS, a human gut-associated 
Methanobrevibacter species, can be distinguished from the rumen-
associated Methanobrevibacter sp. Abm4 based on the presence of the 
mtaABC operon encoding methanol:cobalamin methyltransferase 
genes in the latter (Leahy et  al., 2013). This is a surprise as 
Methanobrevibacter species are not known to utilize methanol (Boone 
et al., 1993) and the roles of mtaABC in strain Abm4 are unclear 
(Leahy et al., 2010, 2013). If these genes indeed allow H2-dependent 
methanogenesis from methanol in Abm4 similar to Methanosphaera 
and Methanomassiliicoccales or only on methanol as seen in 
Methanosarcina, these capabilities will introduce a major change in 
the concept of rumen methanogenesis. Remarkably, a comparison of 
genomes of rumen methanogens with those of closely related species 
originating from amoeba-associated and freshwater isolates has 
revealed higher metabolic versatility in the rumen methanogens (Kelly 
et al., 2014; Lambie et al., 2015).

Currently, for rumen methanogens at least 15 complete assembled 
genome sequences are available in public repositories 
(Supplementary Table S2), and these include that of Mbb. boviskoreani 
JH1 (Lee et al., 2013), Methanoculleus bourgensis KOR-2 (Battumur 
et  al., 2019), and Methanomassiliicoccales RuMen M1 and M2 
(Söllinger et  al., 2016). The number increases further if those 
submitted as drafts or scaffolds are considered (Chen et al., 2023). 
Some of the genomes have been reported with corresponding 
publications (Jeyanathan, 2010; Leahy et al., 2010, 2013; Lee et al., 
2013; Kelly et al., 2014, 2016a,b,c; Lambie et al., 2015; Li, 2016; Li et al., 
2016; Söllinger et al., 2016; Battumur et al., 2019) and several, such as 
that for the Thermoplasmatales BRNA1 genome, have been deposited 
to the GenBank (accession number, CP002916) and not yet been 
reported in a publication.

Analyses of the methanogen genomes pinpoint specific gene 
markers that can be used to infer their metabolic capabilities. These 
markers include methanogenesis-related and cofactor biosynthesis 
genes (Leahy et al., 2010; Roehe et al., 2016; Sollinger et al., 2018; 
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López-García et al., 2022; Figures 4, 5). Genes fmdB and mtrA that 
encode formylmethanofuran dehydrogenase subunit B and methyl-
H4MPT:HS-CoM methyltransferase subunit A, respectively, for 
example, are effective markers for CO2-reducing hydrogenotrophs, 
whereas for methyl-reducing hydrogenotrophs, such as 
Methanosphaera and Methanomassiliicoccales, the markers are 
methanol- and methylamine-specific methyltransferase genes, mtaB 
and mtMA, respectively (Sollinger et al., 2018); mtMA represents a 
combination of mono-, di- and trimethylamine methyltransferase 
genes. An alignment of the sequences of the following seven core 
methanogenesis proteins extracted from whole genome sequences has 
been used in a taxonomic characterization of various methanogens 
from diverse ecological niches: four subunits of methyl-
H4MPT:HS-CoM methyltransferase (MtrB, -C, -D, and -E); F420-
dependent methylene tetrahydromethanopterin dehydrogenase, Mtd 
(Mukhopadhyay et  al., 1995); coenzyme M biosynthesis enzyme, 
ComD (Graupner et al., 2000); and FO synthase subunit 1, CofG 
(Choi et al., 2002; Graham et al., 2003; Anderson et al., 2009) where 
FO is a core unit of coenzyme F420 (Eirich et al., 1979).

4. Adaptation of methanogens to the 
rumen ecosystems

Even the limited amount of data that are available for the relevant 
metabolic and genome characteristics clearly show evidence for the 
evolutionary developments that are specific to rumen methanogens as 
a member of a rumen microbial consortium. In the following sections, 
methanogen colonization and adaptation processes in the rumen 
are summarized.

4.1. Colonization of methanogens in the 
rumen and factors influencing rumen 
methanogen community composition

Calves are born with undeveloped rumens and function as 
monogastric animals. This development stage is also called the 
pre-ruminant phase (Church, 1988; Davis and Drackley, 1998). The 
reflective closure of the reticular groove bypasses the rumen and 
directs the feed, mostly milk or milk replacer, directly to the 
abomasum and then to small and large intestines (Van Soest, 1994). 
The rumen is established through three sequential steps, namely the 
development of rumen anatomy, fermentation capacity and function, 
and microbial colonization (Yáñez-Ruiz et al., 2015). This development 
occurs within the first several weeks or months of a calf ’s life with a 
fully mature rumen forming following a major diet transition from 
colostrum in neonatal, and milk and a concentrate/grain-based feed 
for pre-weaned calves to solid feed in post-weaned calves.

Consumption of solid feed such as roughage or grains stimulates 
the development of rumen papillae for nutrient absorption, muscular 
structure for rumination, expansion of rumen capacity, and 
production of saliva (Tamate et al., 1962, Stobo et al., 1966; Lane and 
Jesse, 1997; Baldwin et al., 2004). In concert with these anatomical and 
feed changes, the rumen microbial community develops. Initial 
microbial colonization in the rumen occurs immediately after birth 
by diverse aerobes and facultative anaerobes (Fonty et al., 1987; Li 
et al., 2012; Jami et al., 2013). Several studies suggested that microbial 

colonization in the rumen may occur in utero between 5 and 7 months 
gestation or even much earlier such as at the end of the first trimester, 
although the mechanism of this transfer from mother to fetus is 
unclear (Guzman et al., 2020; Husso et al., 2021; Zhu et al., 2021; Amat 
et al., 2022).

These early occupants consume O2, and thus, provide an anoxic 
environment for obligate anaerobes that colonize by the second day of 
life (Fonty et al., 1987). Intriguingly, a study with euthanized Holstein 
bull calves detected a typical rumen microbial community comprised 
of methanogens, fibrolytic bacteria, and Geobacter spp. belonging to 
Proteobacteria phylum in the rumen fluid of dairy calves 20 min after 
their birth, suggesting that these microbes present in the GIT right 
after birth and long before the introduction of solid feed (Guzman 
et al., 2015). This finding is somewhat surprising given that these 
neonatal calves solely depend on colostrum and suckle milk for 
energy, and here, the rumen is bypassed. Thus, these observations are 
raising the question about the roles of these early microbial 
communities in the under-developed rumen.

Most studies of methanogen community in fully developed 
rumens point to the major abundance of CO2-reducing 
hydrogenotrophic methanogens (Janssen and Kirs, 2008). The 
information on methanogen community composition in 
pre-ruminants is scarce. Methanomicrobium mobile, Methanococcus 
voltae, and Methanobrevibacter sp., which are capable of utilizing H2 
and formate, have been found in neonatal calves (Guzman et  al., 
2015). However, hydrogen is not considered to be the most prevalent 
electron source for methanogenesis at this stage. Instead, methanol 
and methylamine are used for methanogenesis in young animals, and 
species from Methanosarcinales order have been found to occur 
primarily in young and developing calves (Friedman et al., 2017).

This selection could be due to the presence of other hydrogen 
utilizers such as acetogens and sulfate reducers, which outcompete 
methanogens (Fonty et al., 1987, Morvan et al., 1994; Fonty et al., 
2007). A study with gnotobiotically-reared lambs that were inoculated 
with functional methanogen-free rumen microbiota and then placed 
on solid feed has demonstrated that it is possible to establish a rumen 
system with hydrogenotrophic acetogens and sulfate-reducing 
bacteria as the main hydrogen sink (Fonty et al., 2007); this system 
persisted for 12 months after the initiation. It is noteworthy that the 
composition of the rumen methanogen community early in a calf ’s 
life is also determined by the route of delivery and a lower abundance 
of methanogens is seen in vaginally delivered animals (Furman 
et al., 2020).

In addition to animal development stage, rumen microbial 
composition is influenced by factors such as host genetics and diets. 
Host genetics play roles in shaping the rumen microbiome and 
determining the efficiency of energy harvest from feed and extent of 
methane emission (Carberry et al., 2012; Jami et al., 2014; Kittelmann 
et al., 2014; McCann et al., 2014; Wallace et al., 2015; Roehe et al., 
2016; Sasson et  al., 2017; Difford et  al., 2018; Zhang et  al., 2020; 
Martínez-Álvaro et  al., 2022). A link of the host genetics to the 
selection of twenty heritable microbes belonging to exclusively 
Bacteroidetes and Firmicutes phyla has been established (Sasson et al., 
2017). However, the mechanisms underlying this observation remain 
to be clearly defined.

Of all factors influencing microbial community, diet composition 
and its physical characteristics such as particle size are considered as 
main drivers (Li et al., 2009; Henderson et al., 2015). A fiber-rich diet 
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containing structural carbohydrates and large particles enriches fiber-
degraders such as Fibrobacter succinogenes, Ruminococcus flavifaciens, 
and Ruminococcus albus (Johnson and Johnson, 1995). This type of 
diet also decreases feed digestion rate due to the presence of cell wall 
components that are less rapidly degraded than a starch-based diet, 
hence reducing feed passage rate and resulting in relatively higher 
methane emission (Janssen, 2010). Non-structural carbohydrate-rich 
diets, such as grains, concentrates, and readily fermented and small 
particle feed, shift the microbial community to one with Butyrivibrio 
spp. and Succinivibrionaceae as predominant members, increasing 
feed digestion and passage rate and resulting in lower methane 
emission (Tajima et al., 2001a; Luton et al., 2002; Tatsuoka et al., 2004; 
Friedrich, 2005; Janssen and Kirs, 2008; King et al., 2011; Henderson 
et  al., 2015). Supplementary Table S3 summarized data on the 
methanogen communities in cattle fed various diets.

4.2. Leveraging auxotrophy in a 
nutrient-rich environment

The rumen is rich in nutrients and metabolites that are generated 
from the degradation of plant materials and microbial activities. 
Additionally, internal rumen environment is dynamic, due to the 
constant efflux of feed, ruminal passage rate, and nutrients absorption 
by the animals (Saleem et al., 2012; Ungerfeld, 2020; Malheiros et al., 
2021; Bica et  al., 2022). Such features encourage members of an 
ecosystem to interact and provide a fertile ground for horizontal gene 
transfer or native gene modification-driven development of 
capabilities to transport externally available metabolites into the cells 
and utilize these (Cui et al., 2023). It could also allow the loss of certain 
de novo biosynthesis capabilities through genomic mutations and 
deletions, as the resultant strain would be supported with supplements 
from the community (Li et al., 2016; Kelly et al., 2016a,b,c). The need 
to protect the cells from toxic products released from plant material 
biodegradation and to leverage physical association with a donor for 
better efficiency of nutrient acquisition is also likely a promoter of 
genomic changes. Genome evolution in the face of temporal changes 
in nutrient availability could make an organism either a specialist, 
thriving at a specific time or under specific physiochemical conditions, 
or a generalist.

The most striking case is the loss of components of the 
methanogenesis system, causing both simple and complex impacts 
on the energy metabolism of the organisms. The genomes of Mbb. 
ruminantium, Methanomassiliicoccales isolates ISO4-G1 and 
ISO4-H5, and Thermoplasmatales archaeon BRNA1 lack coenzyme 
M biosynthetic genes (comADE) (Figure  4), causing a need for 
exogenous supply of CoM for the growth of these organisms (Li, 
2016); no such information is available for the Methanomassiliicoccales 
isolates ISO4-G11, RumEn M1, and RumEn M2 (Jeyanathan, 2010; 
Söllinger et al., 2016). Almost all methanogens carry CoM transporter 
genes, ssuABC, as reflected in their sensitivities to bromoethane 
sulfonate (BES), an analog of CoM (Santoro and Konisky, 1987; 
Zhang et al., 2000). The requirement for CoM for rumen methanogens 
has been known for a long time (Balch et al., 1979; Balch and Wolfe, 
1979a,b; Lovley et al., 1984), and a CoM auxotroph has been used in 
a bioassay for this coenzyme (Balch et al., 1979; Balch and Wolfe, 
1979a,b).

Methanomassiliicoccales ISO4-G1 genome lacks the 
uroporphyrinogen-III C-methyltransferase (corA) gene that is 
involved in F430 biosynthesis and the organism likely requires F430 for 
growth (Li, 2016; Figure  4). Mbb. millerae SM9 and Mbb. olleyae 
YLM1 genomes do not carry any of the biotin biosynthesis genes 
(Figure 4). However, both genomes encode a biotin transporter, BioY 
(Kelly et al., 2016a,b,c), suggesting an ability of biotin uptake from the 
environment; rumen fluid contains biotin (Midla et  al., 1998; 
Fitzgerald et al., 2000; Zimmerly and Weiss, 2001; Bergsten et al., 
2003). In pure cultures, methanogens harboring CoM biosynthetic 
genes grow faster than the respective CoM auxotrophic strains (Lovley 
et al., 1984). On the other hand, auxotrophy could give a competitive 
advantage to methanogen in the rumen, as it would not have to invest 
energy for biosynthesis activities.

4.3. Facilitation through horizontal gene 
transfer (HGT)

The instances of horizontal gene transfer (HGT) from bacteria to 
methanogens have been reported in numerous studies (Deppenmeier 
et al., 2002; Fournier and Gogarten, 2008; Lurie-Weinberger et al., 
2012; Garushyants et al., 2015) though the transfer of methanogenesis 
genes to non-methanogenic species has not yet been reported 
(Gribaldo and Brochier-Armanet, 2006). A highly visible case of the 
former is the transfer of acetate kinase (ackA) and 
phosphotransacetylase (pta) genes from clostridia that provided 
acetoclastic methanogenesis capability in Methanosarcina (Fournier 
and Gogarten, 2008). In Methanobrevibacter smithii, a human 
gut-abundant methanogen species, over 15% of the genomic coding 
regions have bacterial characteristics (Lurie-Weinberger et al., 2012). 
For rumen methanogens, most of the transferred genes likely 
originated from organisms belonging to the Firmicutes phylum 
(Leahy et  al., 2010; Kelly et  al., 2016c). We  describe below two 
examples of HGT events that likely helped methanogens to adapt to 
the rumen ecosystem.

4.3.1. Association with a nutrient donor
As many as 294 genes of Mbb. ruminantium M1 have been 

postulated to be HGT-derived (Leahy et al., 2010), and most of these 
are for glycosyl transferases and adhesin-like proteins, which likely 
support Mbb. ruminantium to adapt in this environment (Samuel 
et al., 2007; Lurie-Weinberger et al., 2012; Shterzer and Mizrahi, 2015). 
In terms of the number of adhesin-like proteins encoded by the 
genome, this organism ranks first among the rumen methanogens, 
followed by Mbb. millerae SM9 (Figure 4). These values are consistent 
with the observed overall fitness in the rumen environment and the 
roles of adhesins in facilitating interaction with other ruminal guilds 
(Leahy et al., 2010; Ng et al., 2016; Wei et al., 2017).

In a co-culture experiment where Mbb. ruminantium was found 
to form aggregates with Butyrivibrio proteoclasticus, a Gram-positive 
rumen bacterium that degrades plant polysaccharides and forms 
butyrate, acetate, and hydrogen (Kelly et al., 2010), the levels of six 
adhesin-like proteins were enhanced in the methanogen (Leahy et al., 
2010). A similar interaction of Mbb. ruminantium with rumen 
protozoa Epidinium and Entodinium (Ng et  al., 2016) and rumen 
anaerobic fungi of the Piromyces genus has been documented, and in 
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both cases, cell-to-cell attachments were clearly visualized (Wei et al., 
2017). For the interaction with the protozoa, Mbb. ruminantium 
employs Mru_1499, an adhesin (Ng et al., 2016), and its association 
with Piromyces facilitates a high degree of biomass degradation, and 
methane and acetate formation (Wei et al., 2017). These findings call 
for further studies on the functional roles as well as the bacterial or 
protozoan targets for a large number of genes for adhesin-like proteins 
that have been bioinformatically identified in rumen methanogen 
genomes (Figure 4).

4.3.2. Acquisition of tannin tolerance
Tannins, which are water-soluble polyphenols and originate from 

plants, denature and precipitate proteins, thereby preventing their 
degradation by microbes in the rumen (Westendarp, 2006). This 
action facilitates the passage of proteins to the small intestine, wherein 
the free proteins, detached from the tannin, are hydrolyzed to generate 
amino acids for use by the host animal. Tannins are not significantly 
toxic to ruminants but possess antimicrobial properties, and 
accordingly, have been used to treat diarrhea and control parasite 
infection (Westendarp, 2006; Cardoso-Gutierrez et al., 2021).

An observed post-feeding decrease in the methanogen population 
in the rumen has been thought to be due to the tannins (Fagundes 
et al., 2020), and direct inhibition of methanogens by these compounds 
have also been reported (Tavendale et al., 2005; Goel and Makkar, 
2011). Yet, some of the rumen methanogens tolerate tannins, and this 
is likely due to HGT-derived genes for tannin-modifying enzymes 
(Kelly et al., 2016c). An example of such an enzyme is the tannin acyl 
hydrolase of Mbb. millerae SM9 which hydrolyzes the galloyl ester 
bond in tannins releasing gallic acid and glucose (Banerjee et  al., 
2012). This hydrolase occurs mostly in bacteria and fungi (Banerjee 
et al., 2012) and represents the first known tannase in a methanogen 
(Kelly et  al., 2016c). It is highly homologous to the Lactobacillus 
plantarum enzyme (Kelly et al., 2016c).

5. Ecophysiology of rumen 
methanogens: lessons learned from 
community-based analyses

The early studies on the methanogens’ contributions to the 
conversion of feed into nutrients in ruminants were based on isolation, 
cultivation, and functional characterizations of rumen isolates. These 
efforts revolutionized the field of anaerobic microbiology and 
provided a first look into the rumen microbiome metabolism and 
respective roles in host physiology (Bryant and Burkey, 1953; Hungate, 
1969; Henderson et al., 2015; Seshadri et al., 2018; Zehavi et al., 2018). 
However, the challenges of culturing strict anaerobes and the multiple 
auxotrophies of many of the rumen microbes and their metabolic 
dependence on community members hindered progress in the 
culture-dependent approach (Bryant and Burkey, 1953; Hungate, 
1969; Henderson et al., 2015; Seshadri et al., 2018; Zehavi et al., 2018). 
Then, omics technologies brought a culture-independent approach 
toward an advanced assessment of the composition, metabolic 
potentials, and more importantly, in situ contributions of rumen 
methanogens (Tajima et al., 2001a,b; Luton et al., 2002; Tatsuoka et al., 
2004; Friedrich, 2005; Janssen and Kirs, 2008; King et  al., 2011; 
Henderson et al., 2015). We summarize below the progress and the 
gaps in these efforts.

5.1. Insights into methane emission 
phenotypes inferred from 16S rRNA-based 
community analyses

The development of small subunit rRNAs, 16S and 18S, as 
universal genomic markers for taxonomic identification of prokaryotes 
and eukaryotes, respectively, has revolutionized the field of microbial 
ecology (Pace, 1997). The community structure and relative 
abundance of each taxon in a rumen sample could be analyzed by 
amplifying and sequencing the hypervariable regions of 16S or 18S 
rRNA genes and comparing the sequence information with a reference 
database (Janssen and Kirs, 2008; Henderson et al., 2015). Then, the 
resultant community structure information could be associated with 
the observed events and phenotypes such as methane emission, VFA 
profile, and high- versus low-efficiency animals (Danielsson et al., 
2017). Such analyses could help to identify and target the methanogens 
that contribute to high methane emissions for developing highly 
specific anti-methanogen interventions while limiting the effects on 
ruminant’s feed utilization efficiency and health.

Cattle with higher feed efficiencies, as measured in terms of the 
amount of milk produced or weight gain per kilogram of dry matter 
intake (DMI), emit about 30% less methane than others (Hernandez-
Sanabria et  al., 2012). A strong relationship also exists between 
methane production and residual feed index (RFI) (Herd and Arthur, 
2009; Muro-Reyes et al., 2011). An RFI value, which is independent 
of animal production parameters, is calculated from the difference 
between an animal’s actual and predicted feed intake values where the 
prediction is based on the animal’s body weight and growth rate over 
a specified period (Nkrumah et al., 2006). Cattle with low and high 
RFI values are categorized as “efficient” and “inefficient,” respectively. 
The efficient animals eat less than the predicted average and produce 
less methane (Hegarty et al., 2007; Waghorn and Hegarty, 2011). Since 
methane emissions cause energy loss from the feed, high and 
low-methane-emitting animals are also classified as inefficient and 
efficient, respectively.

Supplementary Table S1 presents the observed relationships 
between methanogen abundance and methane emission phenotypes. 
In general, Methanobrevibacter spp. and Methanosphaera spp. were 
detected in higher abundance, numerically, in the rumen of high and 
low methane-emitting cattle, respectively (Kittelmann et al., 2014; Shi 
et al., 2014; Stepanchenko et al., 2023). High abundances of Mbb. 
ruminantium and unclassified Methanomassiliicoccales have been 
correlated to low emitting phenotype while that of Methanobrevibacter 
gottschalkii was associated with high methane phenotype (Danielsson 
et al., 2017). In contrast to the above findings, Wallace et al. (2015) 
reported that both Methanobrevibacter spp. and Methanosphaera spp. 
were enriched in the high methane emitter.

While CO2-hydrogenotrophs were found in both high and low 
methane emitters, total methanogen abundance was double in high 
methane emitters than in the low methane emitters (Auffret et al., 
2018). An instance with a 7 times higher abundance of Candidatus 
Methanomethylophilus, a methyl-dismutating methanogen, in 
low-emitting animals than in high-emitting animals, has been 
reported (Auffret et al., 2018; Supplementary Table S1). In another 
case, the rumen microbiomes of both high and low methane emitters 
were found to exhibit similar abundances of methanogens, with Mbb. 
gottschalkii and Mbb. ruminantium as dominant members (Kittelmann 
et  al., 2014); Methanosphaera spp. and members of 
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Methanomassiliicoccales order were present at lower abundances. A 
higher value for the abundance of Methanomassiliicoccaceae has been 
recorded for the rumen of barley-fed beef steers with low RFI than 
with high RFI (Li and Guan, 2017). This mixed picture originates from 
the complexity of the rumen microbiome, variable feed composition, 
animal production systems, and sampling times, as well as the 
uncertainties in the 16S rRNA-based genotype assessments as detailed 
below. Of the available ruminant datasets, those pertaining to 
agriculturally important ruminants other than cattle (e.g., buffalo, yak, 
goat) and ruminants from the low- and middle-income countries are 
still limited, and this area needs more attention for further studies (Xie 
et al., 2021; Arndt et al., 2022).

Although the 16S rRNA amplicon sequence-based method is 
widely used in microbial community analysis and offers several 
advantages, it is important to consider the following limitations. First, 
the choice of a particular hypervariable region of 16S rRNA as the 
target of amplification influences the results’ accuracy. The often-used 
hypervariable region 4 (16S rRNA-V4) underrepresents methanogen 
species in the amplicons due to poor sequence homology 
(Supplementary Figure S1; Gilbert et  al., 2014), and the V6-V8 
regions, as well as archaeal-specific or degenerate primers 
(A109F/958R or 1Af/1100Ar), have been suggested as more effective 
tools for capturing rumen archaeome diversity (Janssen and Kirs, 
2008; Tymensen and McAllister, 2012; Snelling et al., 2014; Li et al., 
2016; Bahram et  al., 2018). Accordingly, to analyze both ruminal 
bacterial and archaeal communities, the 16S rRNA primer set 
combinations targeting bacterial V1-V3 or V4 and archaeal V6-V8 
regions have been used (De Mulder et al., 2016; Lopes et al., 2021; Tan 
et al., 2021).

Second is the accuracy of the reference taxonomy that determines 
the quality of classification (Schloss and Westcott, 2011), as a 
noticeable fraction of the sequences in the commonly used databases, 
RDP (Cole et al., 2014), SILVA (Quast et al., 2013) and Greengenes 
(DeSantis et al., 2006), lack informative annotation beyond the genus 
level. Consequently, the highest taxonomic confidence for the 
amplicon-based approach reaches only the genus level (Schloss and 
Westcott, 2011; Johnson et al., 2019). The outcomes can be improved 
by using curated niche-specific databases (Henderson et al., 2019). 
Such databases are available for rumen and bovine GIT (Kittelmann 
et al., 2014; Seedorf et al., 2014; Shi et al., 2014; Ritari et al., 2015), 
insect gut (Newton and Roeselers, 2012; Mikaelyan et  al., 2015), 
freshwater (Rohwer et al., 2018) and marine ecosystems (Tangherlini 
et al., 2018), and wastewater treatment units (McIlroy et al., 2017). 
Third, DNA-based analyses cannot distinguish between active 
community members and non-active or even non-viable members. 
Lastly, a marker gene-based analysis does not provide information on 
the full genomes, and consequently, fails to reveal information on the 
metabolic capabilities of individual organisms, especially those lost 
through mutations or gained horizontally.

Even then, the 16S rRNA-based approach serves as an affordable 
and powerful tool for the initial analysis, providing encouragement 
for higher-resolution omics analyses toward a holistic picture of 
rumen microbiome processes that contribute to methane emissions 
from ruminants. A hopeful development is that the full-length rRNA 
gene sequences recovered from ecological samples are increasing the 
resolution for phylogenetic profiling (Matsuo et al., 2021). With latest 
advancements in the next-generation DNA sequencing technology, 
which substantially lowers the sequencing costs, shallow shotgun 

metagenomic sequencing could provide an alternative and effective 
method for characterizing microbiome samples. It offers both 
taxonomic and functional information at a cost comparable to 
amplicon-based 16S rRNA analysis (Hillmann et al., 2018; Xu et al., 
2021; Stothart et al., 2022; La Reau et al., 2023).

5.2. Metabolic inferences from omics 
analyses

Shotgun metagenome and metatranscriptome sequencing, and 
metaproteomic and metabolomic analyses, stable-isotope probing, as 
well as full genomes of the isolates, have made it possible to perform 
thorough and precise in situ assessments of the structures and 
metabolic functions of the rumen microbiome (Shi et al., 2014; Estes 
et al., 2018; Stewart et al., 2018; Shakya et al., 2019; Wilkinson et al., 
2020; van Cleef et al., 2021, 2022). The recently developed technology 
to rapidly generate full genome sequences from metagenomic DNA 
samples, namely metagenome-assembled genomes or MAGs (Tyson 
et al., 2004; Almeida et al., 2019; Nayfach et al., 2019; Youngblut et al., 
2020; Haryono et al., 2022) has been extended to studies on rumen 
microbiome (Solden et al., 2018; Stewart et al., 2018, 2019; Wilkinson 
et al., 2020; Xie et al., 2021) and it allows the assignment of potential 
metabolic capabilities and in situ roles to microbes that have not even 
been obtained in pure or enrichment cultures.

Thousands of microbial MAGs have been recovered from the 
rumen samples (Solden et  al., 2018; Stewart et  al., 2018, 2019; 
Wilkinson et  al., 2020; Xie et  al., 2021). Two studies delivered 
>10,000 MAGs even from short-read sequences (Wilkinson et al., 
2020; Xie et al., 2021). The genome sequences are facilitating not 
only the predictions of systems’ metabolic capabilities but also the 
strategy for genetic manipulations in situ (Roehe et  al., 2016). 
Additionally, pangenome analysis from the MAG datasets is helping 
to identify environment-signature genes that could shed more 
insight into specific organism’s lifestyles and roles in an ecosystem, 
such as the rumen (Hansen et  al., 2011; de la Cuesta-Zuluaga 
et al., 2021).

A major caveat of metagenomic analysis is its inability to 
distinguish between dead, dormant, and living cells (Shakya et al., 
2019; Weinroth et al., 2022). It also fails to offer a complete assessment 
of the true in situ metabolic activities of the consortia (Shakya et al., 
2019). It is only a combination of the genome and MAG sequences 
and metatranscriptomic, metaproteomic, and metabolomic data helps 
to assign comprehensive potential metabolic capabilities and capture 
real-time community metabolic activities and responses toward 
environmental changes such as feeding for the animals, and following 
are some of the examples of such studies (Shi et al., 2014; Li and Guan, 
2017; Ma et  al., 2018; Sollinger et  al., 2018; Stewart et  al., 2019; 
Wilkinson et  al., 2020; Pitta et  al., 2021; Xie et  al., 2021; Pitta 
et al., 2022).

There are reports showing disagreements between the findings 
about rumen methanogens’ metabolic activities from DNA- and 
RNA-based characterizations (Shi et al., 2014; Li et al., 2016; Pitta 
et al., 2022) and the ratio of the number of transcripts and copies of 
the corresponding DNA (mRNA:DNA) has been proposed as an 
indicator of in situ metabolic activity (Pitta et al., 2022). Methanogens 
of the Methanobacteriales order account for more than 61% of 
methanogen DNA sequences followed by Methanomassiliicoccales 
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which contributes 15.8% of the sequences (Janssen and Kirs, 2008). In 
a study where the CO2-hydrogenotrophic Methanobacteriales were 
highly represented in both the metagenomic and metatranscriptomic 
datasets, the respective mRNA:DNA value for formyl-MFR 
dehydrogenase, a CO2-reduction methanogenesis gene, was 1.5:1 
(Pitta et al., 2022). In contrast, the mRNA:DNA value for mtaB of 
Methanosphaera species, which are methyl-hydrogenotrophs, was 6:1. 
A positive correlation between Methanomassiliicoccales rRNA and 
mtMA transcripts with the CH4 emission rate over time following 
feeding has also been recorded (Sollinger et  al., 2018). These 
observations suggest that Methanomassiliicoccales and Methanosphaera 
species are more active than previously thought (Shi et al., 2014; Li 
et al., 2016; Sollinger et al., 2018; Söllinger and Urich, 2019; Pitta et al., 
2021, 2022).

5.3. Hydrogen removal: inter- and 
intra-guild competitions

There have been efforts to determine the metabolic responses of 
specific methanogens to temporal 

2H
p  changes in the rumen and link 

these to the organisms’ 
2H −p thresholds or hydrogen affinities and 

deployment of specific enzymes (Sollinger et al., 2018; Feldewert et al., 
2020; Pitta et al., 2022). Such details are needed for judicial targeting 
of methanogens for mitigating enteric methane emission. In this 

effort, the methyl-CoM reductase isozymes (McrI and McrII), and 
methanol and methylamine-specific methyl transferases have 
particularly been in focus.

In Methanothermobacter species, McrI and McrII are encoded by 
the mcrBDCGA and mrtBDGA genes and expressed under low and 
high hydrogen availabilities, respectively (Rospert et al., 1990; Reeve, 
1992; Morgan et al., 1997; Reeve et al., 1997), and these two systems 
are readily identified in methanogen genomes via protein primary 
sequence-based homology searches (Deppenmeier et  al., 2002; 
Galagan et al., 2002; Fricke et al., 2006; Maeder et al., 2006; Jeyanathan, 
2010; Leahy et al., 2010; Lambie et al., 2015; Li et al., 2016; Söllinger 
et  al., 2016; Kelly et  al., 2016a,b,c). As presented below and 
summarized in Figure 6, the reported data that links these factors 
together presents a complex and at times apparently 
contradicting picture.

Following feeding, the concentrations of fermentation products 
such as CO2, H2, and VFAs increase, and methyl-containing 
compounds (i.e., methanol, mono-, di-, and trimethylamines) become 
available in the rumen due to the resident microbiome’s metabolic 
activities (Sollinger et al., 2018; Kelly et al., 2019). This situation sets 
up a competition among various functional guilds of ruminal 
methanogens (Rooke et al., 2014; Sollinger et al., 2018; Martínez-
Álvaro et al., 2020; Ungerfeld, 2020). For example, in one case, it was 
found that the abundances of Methanosphaera and 
Methanomassiliicoccales transcripts increased immediately after 

FIGURE 6

Temporal dynamics of rumen methanogen following feeding, a takeaway from transcriptomic studies. Transcript abundance of hydrogenotrophic and 
methyl-dismutating methanogenesis-related genes of rumen methanogens post-feeding. The abundance is shown in log10 values based on (Ma et al., 
2018) or estimated from Sollinger et al. (2018) and Pitta et al. (2021, 2022), respectively. The 

2Hp  threshold limit for Mbb. smithii (Feldewert et al., 
2020). fmd, formylmethanofuran dehydrogenase; mcrG, methyl-CoM reductase subunit G; mtaB, methylcobamide:CoM methyltransferase; mtmB, 
monomethylamine methyltransferase; mtbB, dimethylamine methyltransferase; mttB, trimethylamine methyltransferase; mtMA, summarizes mono-, 
di-, and trimethylamine-specific methyltransferase (mtmB, mtbB, and mttB) transcripts whereas mttB transcripts constitute >70% of the mtMA 
transcripts; ND, not determined.
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feeding (1–3 h), suggesting that the methanogenesis activity of methyl-
hydrogenotrophs spikes following increased availability of hydrogen, 
methanol, and methylamines (Sollinger et al., 2018; Pitta et al., 2021). 
Methanogenesis activity of CO2-hydrogenotrophs such as 
Methanobrevibacter spp., however, remained constant (Sollinger et al., 
2018; Pitta et al., 2021). In another case, significant activity of CO2-
hydrogenotrophs has been observed at 6–10 h post-feeding (Pitta 
et al., 2021).

A theoretical analysis assuming all reactants, except H2, being 
under standard conditions, suggested that the thermodynamic 
equilibrium (Figure 5) of the CO2-hydrogenotrophic methanogenesis 
will be  reached at a 

2H
p  of 0.18 Pa, and for the methyl-

hydrogenotrophic system, it would occur at a much lower 
2H

p  of 
8 × 10−15 Pa, suggesting competitive advantages of methyl-reducing 
members over CO2-reducing hydrogenotrophs at low 

2H
p . However, 

since in a typical rumen, 
2H

p  is relatively high (162 Pa), the ecological 
success of the methyl-reducing hydrogenotrophs is more likely 
determined by their ability to utilize methyl-group containing 
substrates and the availability of these substrates in the rumen (Thauer 
et al., 2008; Feldewert et al., 2020).

Further adaptation has been observed following this common 
response toward 

2H
p , where methyl-hydrogenotrophs developed 

intra-guild competition and substrate preference. For example, a study 
documented that immediately after feeding, when rumen 

2H
p  is high, 

the abundance of Methanosphaera mtaB mRNA abundance soared, 
while a similar response was seen for the Methanomassiliicoccales 
mtMA and not mtaB (Sollinger et al., 2018). This finding indicates that 
Methanosphaera and Methanomassiliicoccales were positioned to 
utilize two different methyl-group containing substrates, methanol, 
and methylamines, respectively, although both groups can utilize all 
these compounds.

6. Reflections and future outlooks

A detailed understanding of the diversity, lifestyle, and metabolism 
of rumen methanogens is key to developing strategies for achieving a 
substantial reduction of methane emissions from ruminants. The 
following section lays out key findings as well as challenges, research 
questions, and outlooks to guide future research toward the stated goal.

6.1. Evolutionary development of rumen 
methanogens and implications of their 
special properties for in vitro studies

Like other host-associated relatives, rumen methanogens have 
evolved from free-living ancestors through genome-size reduction, 
mutations, and gene acquisitions through horizontal gene transfer 
(HGT) (Shterzer and Mizrahi, 2015; Söllinger et al., 2016; Thomas 
et  al., 2021). This genome streamlining process has provided 
competitive advantages to the rumen methanogens, allowing them to: 
(1) conserve energy through auxotrophies and transform into 
oligotrophic metabolic lifestyles and become metabolically efficient; 
(2) increase fitness through acquisitions of new metabolic capabilities; 
and (3) develop syntrophic interactions with hydrogen-producing 
bacteria and protozoa for effective transfer of H2. These very factors 
pose serious challenges to the isolation of methanogens for use in in 

vitro physiological studies (Seshadri et al., 2018; Zehavi et al., 2018). 
A report on Methanomassiliicoccales showcases potential of bias when 
employing artificial laboratory culturing conditions as these tend to 
enrich the metabolically versatile, free-living environmental members 
over the auxotrophic gut-associated species (Söllinger et al., 2016). For 
instance, the Methanomassiliicoccus luminyensis and 
Methanomassiliicoccus intestinalis, which were isolated from human 
feces, belong to an environmental clade and non-gut-associated 
cluster (Dridi et al., 2012; Borrel et al., 2013; Söllinger et al., 2016). 
Thus, future isolation efforts for rumen methanogens must leverage 
information on their metabolic dependencies and syntrophic lifestyles 
gathered from microbial community analyses (Seshadri et al., 2018; 
Zehavi et al., 2018).

6.2. Hydrogen removal and methane 
formation in the rumen – incomplete 
information on the molecular basis

There is a great need for basic information for deciphering the 
mechanisms driving hydrogen removal and methane formation in the 
rumen in the face of temporal fluctuations in 

2H
p  and availability of 

methanol and methylamines and time of deployment of two types of 
hydrogenotrophs. The values for individual methanogen’s threshold 
of 

2H
p  and affinity (Ks values) for CO2 and methyl-group containing 

substrates, respectively, and the efficiency of harvesting electrons from 
bacterial and eukaryotic syntrophic partners are in this list (Feldewert 
et al., 2020).

Methyl-reducing hydrogenotrophs belonging to the poorly 
characterized Methanomassiliicoccales order are of particular interest 
(Dridi et  al., 2012; Gorlas et  al., 2012; Borrel et  al., 2013). These 
organisms have lost the genes for all enzymes catalyzing the first six 
steps of the CO2-reducing methanogenesis pathway, an unprecedented 
phenomenon that has not been encountered in any other methanogen 
order (Dridi et al., 2012; Li et al., 2016; Kelly et al., 2016a,b; Lyu and 
Liu, 2019). However, they carry genes for the utilization of a diversity 
of methylated compounds, suggesting their metabolic limitation on 
one side and versatility on the other side as a way of adaptation to a 
nutrient-rich environment (Söllinger et al., 2016; Thomas et al., 2021).

An anticipated greater contribution of the previously 
underestimated Methanomassiliicoccales to methane production in 
the rumen (Pitta et al., 2022) is potentially driven by two factors. 
First, their lower threshold for H2 as mentioned above allows them to 
function at lower 

2H
p  than that of the CO2-reducing 

hydrogenotrophs. Second, by utilizing a diversity of methyl groups 
containing methanogenesis substrates effectively, they prevail over 
other methyl-reducing hydrogenotrophs and methyl-dismutating 
methanogens. Nevertheless, a more definitive assessment of such 
relative capabilities requires information on the affinities (Ks) for 
methyl-group containing substrates of methanogens that utilize 
methyl groups for methanogenesis.

There is a lack of sufficient data for assigning the 
2H

p  conditions 
under which an organism will deploy a particular Mcr isoenzyme. As 
a result, the reported assignments do not always match with an 
observed physiological response of the respective organisms toward 
hydrogen availability. For example, as mentioned above, 
Methanomassiliicoccales and Methanosphaera spp. employ Mcr II that 
is thought to be expressed under high 

2H
p  conditions (Rospert et al., 
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1990; Reeve, 1992; Morgan et al., 1997; Reeve et al., 1997), and this 
functional association contradicts the observed lower 

2H
p  threshold 

of these organisms (Feldewert et  al., 2020). This discrepancy 
illuminates a major gap in studies on an enzyme that is the ultimate 
biological producer of methane (Wolfe, 1992).

The information on Mcr isoenzymes originated from 
investigations with two Methanothermobacter species, which are 
thermophiles (Rospert et al., 1990; Reeve, 1992; Morgan et al., 1997; 
Reeve et al., 1997), and these may not apply to other methanogens. 
The suggestion that even the activity of a Mcr could be under 

2H −p  
or redox-based regulation (Susanti et  al., 2014) has also not been 
tested. As a result, a primary sequence homology-based identification 
of mcrA and mrt, which is the norm in ecological work, cannot 
indicate with certainty if the enzymes encoded by these genes are 
expressed or active under a particular 

2H
p  condition.

The possibility that certain Methanobrevibacter species (i.e., Mbb. 
ruminantium M1) may perform methyl-hydrogenotrophy employing 
an HGT-derived methyl transferase (Leahy et al., 2013) brings a new 
dimension to the roles of these organisms in the rumen. Also, right 
after feeding, the H2 production rate far exceeds rumen methanogens’ 
available capacities to utilize this energy source (Rooke et al., 2014; 
Ungerfeld, 2020). This situation sets a lag between H2 production and 
CH4 emission (Rooke et al., 2014; van Lingen et al., 2017), and the 
suggestion that this effect is mainly due to a delayed expression of 
methanogenesis genes needs a detailed interrogation (Sollinger et al., 
2018; Ungerfeld, 2020).

6.3. Methanogenesis from formate in the 
rumen – largely untapped area of research

Early studies showed that formate is not a major precursor of 
methane in the rumen (Carroll and Hungate, 1955; Hungate et al., 
1970) and this conclusion has recently been supported by the 
observation that the rumen samples lack transcripts for formate 
dehydrogenase; Fdh (Pitta et al., 2022) and formate were not detected 
at most timepoints following feeding (Sollinger et al., 2018). These 
findings contrast the observation that Methanobrevibacter species 
represent 60–80% of the rumen methanogen community (Henderson 
et  al., 2015), and as mentioned above, these organisms carry the 
fdhABC genes (Schauer and Ferry, 1982; Nölling and Reeve, 1997). 
Fdh is encoded by an fdhABC operon that provides FdhAB and FdhC 
as a catalytic unit and formate transporter, respectively (Baron and 
Ferry, 1989). FdhAB oxidizes formate to CO2 and utilizes the electrons 
so generated for the reduction of F420 to F420H2.

Indeed, in Mbb. ruminantium M1, the abundance of fdhAB rRNA 
is enhanced when this methanogen is grown in a co-culture with 
Butyrivibrio proteoclasticus B316, an H2 and formate producer, 
indicating formate utilization by this methanogen during this 
syntrophic growth (Leahy et  al., 2010). Also, formate as a 
methanogenesis substrate supports the growth of Mbb. ruminantium 
(Smith and Hungate, 1958). The sheep rumen microbiome has been 
found to exhibit poor expression of bacterial formate hydrogen lyases 
and other formate dehydrogenases (Greening et  al., 2019). This 
suggests that formate produced in the rumen would be available for 
formate utilizers like Methanobrevibacter. The formate metabolism 
could also bring ecological fitness to the Methanobrevibacter spp. and 
Mb. formicicum.

The absence of formate dehydrogenase in the methyl-
hydrogenotrophs gives free rein to formate utilizing methanogens for 
this substrate. In addition, being soluble, formate is an excellent 
vehicle for interspecies electron transfer and planktonic metabolism 
(Thiele and Zeikus, 1988; Leng, 2014), and removal of formate would 
prevent the acidification of the system as the pKa of the formic acid/
formate pair is 3.75. The reported low levels of formate and fdh 
transcripts in the rumen (Sollinger et al., 2018; Pitta et al., 2022) could 
be  rationalized by the high abundance of the Methanobrevibacter 
population. Also, the reported data were collected 2 h after feeding 
(Pitta et  al., 2022), where the formate level would have dropped 
substantially, obviating the need for high-level fdh transcripts. The 
identification of formate utilizing methanogens in early colonizers in 
calves (Guzman et  al., 2015) is intriguing, raising a question of 
whether formate is the substrate for methanogenesis at this stage. 
Further study on the formate and dissolved H2 levels in the 
undeveloped foregut of pre-ruminants could give insights into the role 
of methanogenesis from formate at this stage of the animals.

Thus, formate methanogenesis is an important yet less appreciated 
area of rumen microbial metabolism research. It needs to be studied 
with consideration that acetogenic bacteria with their ability to 
perform acetogenesis with formate would compete for this substrate 
(Greening and Leedle, 1989; Doré and Bryant, 1990; Schink et al., 
2017; Greening et al., 2019; Moon et al., 2021).

6.4. Harnessing omics approach for 
analyzing metabolism of rumen 
methanogens – current status and future 
steps

As mentioned above, there is a need to strengthen the 16S rRNA 
sequence database as it would allow effective use of the most affordable 
route to community composition analysis that employs sequencing 
and analysis of short (~100–200 bp) amplicons of 16S rRNA gene 
(Johnson et  al., 2019; Weinroth et  al., 2022). Under the current 
situation, the results of such analyses need to be  considered with 
caution as it often provides only low-resolution identities, an over-
simplification of the diversity and incomplete metabolic inferences for 
methanogens in the rumen (Pitta et al., 2022). There are instances 
where metatranscriptomic and 16S rRNA amplicon sequences from 
rumen samples detected the presence of Methanocaldococcus spp. and 
Methanopyrus spp., which are obligate hyperthermophiles (Lyu and 
Liu, 2019), and Mbb. smithii, a human-associated organism (Zhou 
et al., 2009; Kong et al., 2013; Auffret et al., 2018; Mann et al., 2018; 
Tan et al., 2021).

Comprehensive and effective comparative genomic studies and 
analysis of metatranscriptomic and metaproteomic data with rumen 
methanogens are limited by the inadequate number of well-
annotated reference genomes of pure culture isolates and MAGs. 
Even the Hungate 1,000 Project which generated sequences of 501 
genomes, covering 480 ruminal bacteria and 21 archaea species, 
represents only 15 rumen methanogens (Seshadri et al., 2018). The 
number of isolate genome and MAG sequences for rumen 
methanogens that are publicly available are only 14 
(Supplementary Table S2) and 206, respectively (Söllinger et al., 
2016; Stewart et al., 2018, 2019; Wilkinson et al., 2020; Glendinning 
et al., 2021; Xie et al., 2021).
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The gap in reference data extends beyond the molecular data. In 
most cases there is little information on the association of isolate 
genomes, MAGs, and even sometimes the metatranscriptomic and 
metaproteomic data for the methanogens with the following key 
parameters: (i) details of the feed; (ii) spatial location within the 
rumen, namely, fiber-associated, planktonic, and epimural 
microbiome; (iii) co-occurrence, such as association with the 
syntrophic partners, protozoa, and bacteria; (iv) timing of sampling 
with respect to feeding; and (v) comparison with free-living 
counterparts. In a recent study with cattle grazing tall fescue, a major 
perturbation of the microbiome by a toxic version of the grass was 
detected only when the sessile and planktonic fractions were analyzed 
separately (Khairunisa et al., 2022) and similar observations have been 
reported by others (Pitta et al., 2014).

The developmental stage of the animal host is a key factor (Fonty 
et al., 1987; Morvan et al., 1994; Fonty et al., 2007; Guzman et al., 2015; 
Friedman et al., 2017; Furman et al., 2020), as rumen microbiome 
modulation at this early stage of the animals is being considered as a 
potential methane mitigation strategy (Meale et  al., 2021). The 
metabolism of methanogens that colonize the gut of the pre-ruminant 
phase and its influence on the development of the rumen remains to 
be investigated critically.

6.5. Future steps

This review shows that the current knowledge of rumen 
methanogens cannot adequately support the efforts for designing 
measures that will mitigate methane emissions from ruminants and 
preserve rumen function in the absence or in reduced methanogenic 
activity. Even after ~80 years of research, it is not known why 
Methanobrevibacter spp. dominate the rumen microbiome and what 
their specific contributions are. Filling these gaps requires significant 
isolation efforts, especially for those members with very few or no 
pure culture representatives (e.g., Methanomassiliicoccales) and the 
generation of more well-annotated genomes and MAG sequences.

A culturomic approach leveraging both undefined media 
containing rumen fluid and defined media showed that 23% of the 
rumen microbiota is cultivable with these technologies (Zehavi et al., 
2018). However, it provided a relatively low coverage for the rumen 
methanogens. For example, of the prokaryotes in the Hungate 1,000 
culture collection, methanogens represent only 4.1% of the total 
(Seshadri et al., 2018). Thus, for an isolation effort to be productive 
will require innovative approaches. If the unknown growth 
requirements make it difficult to generate axenic cultures, attempts 
could be made to obtain low-complexity mixed cultures. Since 16S 
rRNA provides an affordable and amenable route for rapid assessment 
of microbiome diversity, the respective database needs to 
be strengthened.

With more reference isolates, comprehensive physiological 
studies could occur with a focus on newly recognized genomic 
features that promote colonization of the rumen and high-level 
methane production. One high-value area is the cellular 
interactions of rumen methanogens with their syntrophic partners 
such as protozoa, fungi, and bacteria where the following 
questions are key. What governs such interactions? What defines 
the specificity and recognition by interacting partners? What are the 

mechanisms of interspecies electron transport? Co-occurrence 
analysis that could reveal metabolic differences between host-
associated and free-living methanogens would also be valuable. 
Detailed information on methanol and methylamine 
concentrations in the rumen of animals fed various diets, 
thresholds for these substrates and 

2H
p  of various rumen 

methanogens, and catalytic properties and expression conditions 
of the Mcr isoenzymes are needed to make the analysis and 
interpretation of in situ observations more reliable. The 
information on the Mcr isoenzymes is also needed for correct 
functional annotations of mcr and mrt homologs. The diversity 
and metabolic activities of methanogens residing in various 
locations of the rumen as mentioned above could give insights 
into true activities driving in situ methane production.
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