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Antimicrobial growth promoters (AGP) have played a decisive role in animal agriculture for

over half a century. Despite mounting concerns about antimicrobial resistance and demand

for antibiotic alternatives, a thorough understanding of how these compounds drive perfor-

mance is missing. Here we investigate the functional footprint of microbial communities in

the cecum of chickens fed four distinct AGP. We find relatively few taxa, metabolic or

antimicrobial resistance genes similarly altered across treatments, with those changes often

driven by the abundances of core microbiome members. Constraints-based modeling of 25

core bacterial genera associated increased performance with fewer metabolite demands for

microbial growth, pointing to altered nitrogen utilization as a potential mechanism of narasin,

the AGP with the largest performance increase in our study. Untargeted metabolomics of

narasin treated birds aligned with model predictions, suggesting that the core cecum

microbiome might be targeted for enhanced performance via its contribution to host-

microbiota metabolic crosstalk.
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The discovery in the 1940’s that feeding of antimicrobial
compounds could accelerate animal growth played a sig-
nificant role in shaping and expanding animal agriculture

to its current scale1,2. Intensive animal food production has
sustained the increasing global demand for animal protein3 but
has also raised concerns about selection for antimicrobial resis-
tance (AMR) leading to antimicrobial-resistant infections in
human and animal clinical settings4–7. Over 70% of anti-
microbials produced globally are used in animal agriculture8 and
although the use of antimicrobial compounds for growth pro-
motion is being banned in multiple countries9, their application
has been projected to increase due to increased adoption of large-
scale intensive farming operations in countries such as Brazil,
Russia, India, China, and South Africa10. The impact of anti-
microbial growth promoters (AGP) has been especially important
for the poultry industry, which has expanded more than any
other animal protein source over the past half-century11. Among
poultry species, chickens (Gallus gallus) account for most of the
global poultry production. Thus, there is a high incentive to
identify AGP alternatives that can sustain the increasing demand
for poultry while reducing the risk for AMR selection and its
consequences for human and animal health.

Despite their widespread use, there are multiple gaps in our
understanding of how AGP impact animal performance12–14.
This is significant as knowledge of the physiological mechanisms
is likely to uncover biological targets to induce the same benefits
of AGP without the risk of AMR13. Multiple antimicrobial
compounds have been used to increase weight gain and feed
efficiency in farm animals. These include cyclic peptides (e.g.,
bacitracin), ionopohores (e.g., monensin, narasin), strepto-
gramins (e.g., virginiamycin), orthosomycins (e.g., avilamycin),
and macrolides (e.g., tylosin, spiramcycin) among others15,16.
Even though these compounds differ in their antimicrobial
spectrum and antibacterial mode of action17, whether they
increase performance through similar or different mechanisms is
not clear. Several hypotheses have been advanced to explain how
AGP may contribute to host physiology15,18, nevertheless,
compound-specific mechanisms, if any, remain poorly described.
Some of the generic AGP proposed mechanisms include limiting
opportunistic pathogens and subclinical infections19, decreased
microbial competition for host nutrients20, modulating host fat
digestion and utilization21–23, inhibiting the production of toxins
in the gut24, regulating host’s immunity and inflammation12,25,
and improving nitrogen balance26. Given the involvement of the
gut microbiome in most of these proposed mechanisms, engi-
neering the gut microbiome to drive the performance and health
status of animals has received considerable attention in the fight
against AMR27,28.

The avian caeca are a pair of sacs at the transition between the
ileum and the large intestine. Among all organs, the cecum
contains the highest density of microbial biomass in chickens29,
and it has been implicated in processes including fermentation of
undigested fiber, nitrogen recycling, water absorption, and overall
nutritional status30,31. Analysis of the composition of cecal
microbial communities in broiler chickens has shown a pre-
dictable progression through development towards a stable
microbial composition32. Additionally, several studies have
identified correlations between members of the cecal microbiome
and bird performance under antibiotic treatment and antibiotic-
free conditions32–34, as well as similarities in the microbiome
effects induced by antibiotics and probiotics35. While those
associations support the notion that manipulating the composi-
tion of the gut microbiome can provide a path for replacing AGP,
few studies have assessed the overlap in the taxonomic and
functional consequences of distinct AGP36,37 to guide micro-
biome engineering efforts.

To advance our understanding of the possible roles of the cecal
microbiome on AGP mechanisms, here we used four distinct
AGP to investigate functional changes in the cecal microbiome of
broiler chickens. First, we describe how AGP leading to different
levels of growth promotion alter the community structures and
gene abundance profiles of the cecal microbiomes of treated birds.
Second, we demonstrate the contribution of core microbiome
members to many of the observed functional shifts. Third, to
investigate how these microorganisms may affect host physiology,
we generate draft metabolic reconstructions for the core microbial
genera of the cecal microbiome and model and compare phe-
notypic traits of the corresponding communities in silico. Finally,
we use untargeted metabolomics analysis to complement the
metagenomics and metabolic modeling results and further vali-
date the functional impact of one of the AGP on growth
performance.

Results
AGP significantly improved weight gain and feed conversion
efficiency of broilers. We carried out a clinical study including
500 broilers randomly assigned to either a control group or to
one of four in-feed AGP treatment groups [bacitracin methylene
disalicylate (BMD), avilamycin, virginiamycin, or narasin].
Compared to the control group, broilers receiving AGP in the
diet showed increased daily weight gain and improved feed
conversion efficiency (Fig. 1a, b, and Supplementary Data 1).
These trends were present throughout the length of the study
(35 days) but became visibly more marked during the finisher
period (28 to 35 days). On the final week of the study, the
average daily gain (ADG) was 9 to 14% higher in AGP treated
animals compared to controls and the feed conversion ratio
(FCR) was better in AGP treated groups by 3.8 to 6.2%. Among
AGP, narasin had the highest average impact on performance,
followed by virginiamycin, avilamycin, and BMD. We note that
FCR values for day 7 birds are higher than expected, this is likely
due to the feed being offered to birds in trays on the floor during
the first week of the study, facilitating access to food but also
causing spills.

Different AGP lead to distinct cecal microbial community
structures. After confirming the AGP effects on performance,
we investigated how the cecal microbiome might have changed
along with the observed phenotypes. For this, the cecal contents
from 15 birds per treatment (three from each pen) were used
for 16 S rRNA amplicon microbiome profiling at days 7, 21, and
35 of the study (data was obtained for 223 samples). Across
samples, a total 2937 amplicon sequence variants (ASV) were
identified, with a mean of 137 ASV per sample. In agreement
with previous reports32, we observed a strong effect of bird age
on microbiome composition (Fig. 1c), with samples from dif-
ferent days spanning the first two principal components of the
dissimilarity matrix between samples (variance explained:
~62%). Independent of age, we also observed significant
microbiome structure differences between samples from dif-
ferent treatment groups. An analysis of similarities (ANOSIM)
based on the Bray-Curtis dissimilarities among 16 S profiles
showed that, except for a couple of treatment pairs at 7 days, all
pairwise comparisons between treatments resulted in sig-
nificantly different microbiome compositions at every time-
point (Fig. 1d). Interestingly, on days 21 and 35 there was a
higher similarity (lower ANOSIM R scores) among control
samples and samples from the AGP treatments producing the
smallest effects on performance (BMD and avilamycin). Thus,
larger performance gains due AGP application were accom-
panied by bigger changes in cecal microbiome composition.
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Looking at the diversity within samples (α diversity), the effect
of bird age on cecal microbial community structure was
reflected by an increase in both richness and evenness as birds
developed (Fig. 1e, f). However, the application of AGP tended
to reduce microbial richness at all three timepoints, as well as
evenness (Simpson diversity) in the case of day-7 samples.

Altogether, the ANOSIM and α diversity results indicate that
each AGP led to the development of a distinct cecal microbial
community structure. To investigate how these mature commu-
nities may have contributed to the observed performance gains,
we used shotgun metagenomics to analyze the gene content of
microbes in the cecum of day 35 broilers across treatments.

Fig. 1 Effects of four different AGP on bird performance and cecal microbiome composition. a) Box plot showing the average daily gain as a function of
bird age. ADG was calculated separately for each week of the experiment for each of the treatment groups. b) Like a, but for the feed conversion ratio as a
function of bird age. n= 5 pens per treatment in a and b. c) Principal coordinates analysis using the Bray-Curtis dissimilarity among 16 S microbiome
profiles. Each symbol represents a sample. The numbers in parenthesis indicate the percentage of the dissimilarity variance explained by each of the first
two principal components. d) ANOSIM analysis for samples from birds of different ages and AGP treatment groups. In the heatmap, values below the
diagonal represent the ANOSIM R-score. Lower values indicate more similar microbial communities. Values above the diagonal indicate the corresponding
p-value for the null hypothesis of similar communities. e) Amplicon sequence variant (ASV) richness for cecal samples from birds of different ages and
AGP treatment groups quantified with the Chao1 index. f) Like e but for ASV diversity quantified using the Simpson index. n= 15 birds per treatment in e
and f. The boxes in a, b, e and f represent the median and interquartile range; whiskers indicate the range of the distribution excluding outliers. Outliers are
at least 1.5 times the interquartile range below or above the first and third quartile, respectively. *: One-sided Mann-Whitney U p-value < 0.05; X: Two-
sided p-value < 0.05.
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Partially overlapping functional pathways are enriched by
different AGP. Predicted genes from 74 day-35 samples were
functionally annotated using RAST functional roles38, and role
abundances per sample were expressed in terms of mean copy
numbers per genome (see Methods). Interestingly, the normal-
ized data revealed a trend of increasing gene content per genome
in the AGP treatments compared to controls, which was sig-
nificant in the case of narasin (Mann-Whitney U p-value= 0.05,
Supplementary Fig. 1a). Additionally, based on the Bray-Curtis
dissimilarities between functional profiles we observed a trend of
increasing functional distance with increasing AGP effects on
performance (Supplementary Fig. 1b). Specifically, the ANOSIM
R scores between profiles in the control, BMD and avilamycin
groups were smaller than the corresponding distances to the
virginiamycin or narasin groups. Furthermore, in agreement with
the 16 S results, taxonomic profile distances calculated from the
shotgun metagenomics data showed mostly significant differences
between treatments (ANOSIM p-values < 0.05) and larger dif-
ferences (ANOSIM R scores) for the AGP producing the highest
effects on growth (Supplementary Fig. 1c). Also, there were more
differentially abundant genera relative to control with virginia-
mycin and narasin than with avilamycin or BMD (Supplementary
Data 2).

To investigate how AGP treatment altered the functional
makeup of the cecal microbiome, we carried out gene set
enrichment analysis (GSEA)39 to identify subsystems or pathways
enriched by each AGP compared to control birds. Figure 2
depicts the major functional processes whose abundance was
enriched (blue) or depleted (red) in the cecal microbiome of
AGP-treated birds. Notably, each treatment pointed to a distinct
collection of enriched or depleted gene functions, with about
8-fold more functional categories changed by a single AGP than
by two or more AGP treatments (Supplementary Data 3).
Consistent with the ANOSIM results, there were more functional

terms enriched or depleted in the virginiamycin and narasin
treatments, than in birds treated with BMD or avilamycin.
Among the processes independently enriched by more than one
AGP were the metabolism of aromatic amino acids (all AGP
except BMD), propanediol utilization, molybdenum-containing
cofactor synthesis, and CO2 fixation via the Wood-Ljungdahl
pathway (BMD and narasin), and protein synthesis and the
Entner-Doudoroff pathway (BMD and avilamycin). Processes
enriched by individual AGP included biotin synthesis (BMD);
methionine metabolism, glycolysis, sporulation, and isoprenoid
synthesis (avilamycin); betaine and pyridoxin biosynthesis, stress
response, bacterial secretion systems, antimicrobial resistance,
and biosynthesis of Gram-negative cell wall components
(virginiamycin); and tryptophan synthesis, urea degradation,
heme and tetrapyrrole biosynthesis, and xylose utilization, among
others (narasin). Narasin also led to the depletion of functional
roles associated with the utilization of mucin polysaccharides as
well as cell-matrix components including sialic acid,
N-acetylneuraminate and hyaluronic acid (Supplementary
Data 3).

In addition to gene functions enriched by their abundance
difference between the AGP treatments and control, we used
GSEA to look for functions enriched according to the correlation
between functional role abundances and the weight at day 35 of
corresponding birds within each treatment (Supplementary
Data 4). In general, the gene functions enriched according to
both methods were similar. Specifically, ~25% of the gene sets
significantly enriched by at least one AGP compared to control,
were also significantly enriched (p-value < 0.05) by a positive
correlation with weight in at least one of the five treatment groups
(e.g. protein synthesis, the Wood-Ljungdahl pathway, tryptophan
synthesis, sporulation, glycolysis, tetrapyrrole synthesis, and urea
degradation). Similarly, 50% of depleted terms with AGP
compared to control showed a negative correlation with weight

Fig. 2 Major functional categories enriched or depleted in response to AGP relative to controls in the cecal microbiome. Each dot represents a set of
functional roles significantly enriched or depleted relative to controls (FDR < 0.15). Blue lines connect AGP to significantly enriched processes according to
Gene Set Enrichment Analysis (GSEA). Red lines connect AGP to significantly depleted processes. Labels capture the common functionality in select
clusters of enriched terms (see Supplementary Data 3 for the full list of terms). AVI avilamycin, VIR virginiamycin, NAR narasin, AA amino acid, ED Entner
Duodoroff, Mo molybdenum.
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in at least one treatment group. These include the utilization of
sialic acid, hyaluronic acid and N-acetylneuraminate. Interest-
ingly, while several terms were enriched by both methods for
samples from the same treatment (e.g., protein synthesis in BMD
or glycolysis and sporulation in avilamycin), several of the
processes enriched by narasin also positively associated with
weight in other treatments. Namely, tetrapyrroles and tryptophan
synthesis (avilamycin), and urea degradation (control). These
results suggest that these processes could potentially play a role in
broiler performance even when they are induced by different
treatments.

The core microbiome accounts for a large fraction of AGP-
related functional shifts. Changes in the prevalence of genes
associated with a particular function can be due to differences in
either the gene content or abundance of multiple, relatively rare
microorganisms or of the more prevalent and abundant members
of the cecal microbiome. To check whether one of these cases
dominates the functional changes observed for each AGP, we
repeated the above GSEA analysis using only gene abundances
calculated for core members of the microbiome. Core micro-
biome members were defined as the top 25 bacterial genera
according to their mean relative abundance across all day-35
samples (see Methods). These core genera (Supplementary
Data 5) account, on average, for ~90% of the microbial relative
abundance (Supplementary Fig. 2a) estimated from the metage-
nomics reads and represent close to 75% of functional role rela-
tive abundances (Supplementary Fig. 2b). In the case of BMD and
avilamycin, only 18 and 28% of GSEA enriched functions were
still significant (p-value < 0.05) using only gene abundances from
core genera. However, this number increased to 52 and 78% in
the case of virginiamycin and narasin, respectively. Thus, a sub-
stantial proportion of functional changes (61 out of 117 function
enrichments), especially for the most effective AGP, can be
attributed to changes in the abundance or gene content of core
microbiome members. We noted that the core microbiome
accounts for a slightly higher fraction of relative abundances (~1-
5%) in samples from the avilamycin, virginiamycin and narasin
treatments compared to BMD and controls (Supplementary
Fig. 2c).

Next, we asked whether functional changes across treatments
were mostly driven by differences in the gene content or the
abundance of the core microbial genera. For each of the 59
unique functional terms also enriched by the core microbiome
we calculated the correlation across all samples between the
relative abundance of core genera and their contribution to mean
gene copy numbers of the corresponding functions. A positive
correlation would suggest that functional differences between
samples reflect abundance differences of microorganisms with a
similar gene content. No correlation, on the other hand, would
indicate that functional differences are due to distinct genes being
carried by the same genera across samples from different
treatments. As shown in Fig. 3, most correlations were found to
be positive and significant, suggesting that the genus-level gene
content is likely shared across treatments, and that shifts in the
abundance of the corresponding functions were due to altered
abundances of core genera in the cecum microbiome. We focus
on the direction and not the magnitude of the correlation because
although the per-sample abundance of a particular genus is
estimated based on thousands of reads mapping to corresponding
reference genomes, its contribution to a function is based on
orders of magnitude fewer reads mapping to only a handful of
genes. As an additional test, we looked at the overlap between
functional roles assigned to core genera in samples from different
treatments. We found (Supplementary Fig. 3) that about 80% of

the functions assigned to a particular genus in samples from one
treatment were also assigned to that genus in other treatments.
While this result also suggest that the genus level gene content of
core genera was likely similar across all samples, we observed a
few outliers. Specifically, Salmonella, Escherichia, Clostridioides,
and Staphylococcus showed a much lower gene content overlap,
suggesting that AGP could have enriched for different species and
strains within these genera. Salmonella and Escherichia were
found at much higher abundances in the virginiamycin treatment
(~50% relative abundance), and they are largely responsible,
along with Staphylococcus, for the virulence, protein secretion
systems and AMR functional roles enriched by this AGP
(Supplementary Fig 4 and Supplementary Note 1).

Altogether the results indicate that changes in abundance of
core microbiome genera induced by AGP treatment drove a large
fraction of the gene function abundance differences observed in
the cecum microbiome.

Different AMR gene abundance profiles upon treatment with
distinct AGP. To further investigate the impact of AGP on the
prevalence of AMR genes in the cecum microbiome we used the
AMR++40 pipeline to estimate AMR gene abundances across
samples. The analysis revealed a significant increase in total AMR
gene abundance in the BMD, virginiamycin, and narasin treat-
ments compared to control (Fig. 4a). Additionally, the total
number of different AMR genes detected was higher in the avi-
lamycin and virginiamycin groups (Fig. 4b). Interestingly, looking
at the similarity between treatments based on their AMR gene
profiles we observed similar patterns to those found when com-
paring taxonomic or functional profiles (Fig. 4c). Namely, the
AMR gene profiles were most similar between control and AGP
producing the smaller effects on performance, and least similar
for virginiamycin and narasin compared to the remaining treat-
ments. Compared to the control, the virginiamycin cecal micro-
biome enriched (one-sided Mann-Whitney U p-value < 0.05) for
genes involved in resistance to multiple drugs (e.g., aminoglyco-
sides, bacitracin, cationic antimicrobial peptides, elfamycins,
fosfomycins, rifampin, betalactams, and aminocumarins). Nar-
asin, on the other hand, enriched for resistance to tetracyclines.
Interestingly, avilamycin reduced the abundance of genes asso-
ciated with resistance to nucleosides and macrolides (Fig. 4d). In
conclusion, the effect of AGP on AMR profiles was minor for
BMD and avilamycin, and, similar to taxonomic and functional
profiles, treatment with virginiamycin and narasin led to sig-
nificantly different AMR gene abundance profiles.

Pan-genome scale metabolic modeling of core cecum microbial
genera. We reasoned that the metabolism and growth of the most
abundant members of the microbiome is likely to determine the
bulk of metabolic demands and byproducts of the cecum
microbiome. Specifically, metabolic fluxes driven by low abun-
dance microbes (non-core, or <0.5% relative abundance) would
have to be comparatively large to counteract the effects of core
microbiome members representing 90% of microbial abundances.
Given that the genome composition of these core microbes seems
largely conserved across samples, we built individual metabolic
reconstructions for each of the 25 core genera based on the gene
functions assigned to those genera across samples (see Methods,
Supplementary Data 5, and Supplementary Note 2). We then
used constraints-based modeling41 to investigate possible func-
tional impacts of their abundance changes.

To characterize the potential impact of the metabolism of core
microbes on metabolite pools in the cecum we first studied their
ability to use different carbon and nitrogen sources. We simulated
the ability of each model to utilize one of 129 and 76 compounds
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as the main carbon or nitrogen source for growth, respectively
(see Methods). As shown in Fig. 5a, b, the predictions varied
substantially across genera, suggesting that different genera in the
cecum have unique metabolic capabilities. As expected from their
larger gene sets, the reconstructions for Escherichia, Salmonella,
Clostridium, and Ruminococcus, predicted a higher number of
carbon and nitrogen compounds that could support growth.
Given the observed differences in metabolic versatility between
genera, we asked how differences in the relative abundances of
these microbes across treatments may impact the metabolic
potential of the core cecum microbiome. For each sample, the
utilization potential of a particular carbon or nitrogen source was
calculated as the relative abundance in the core microbiome of
the genera able to use it for biomass synthesis. Core relative
abundances were calculated by dividing the abundance of each
core genus by the total abundance of core genera in each sample.
In general, we found more compounds with significantly higher
carbon and nitrogen utilization potentials in AGP treated birds
compared to the control than compounds with lower utilization
potentials (Fig. 5c, d). These results support the idea that
metabolic versatility of the core cecum microbiome was increased
following virginiamycin and narasin treatment.

To further explore the metabolic consequences of core
microbiome composition and functional potential, we predicted
essential nutrients for growth for each of the core genera (see
Methods). Each genus was characterized by a mean metabolite
essentiality value representing the probability that a metabolite is
essential for growth across random nutritional environments. For
each sample, we then calculated a total metabolic demand of the
core microbiome by summing the mean metabolite essentiality of
core genera weighted by their relative abundance (Fig. 5e). The
results showed a significantly lower overall metabolic demand of
the core microbiome in the virginiamycin and narasin treatments;
that is, a lower likelihood that any single nutrient is required for
the growth of a random member of the core microbiome. These
results were robust to the parameters used to simulate random
environments (Supplementary Fig. 8a, b) and agree with the
above prediction of a higher potential to use distinct nutrients as
carbon or nitrogen sources.

Interestingly, we found that the utilization potential of urea as a
nitrogen source for biomass synthesis was higher in the narasin
treatment (Supplementary Fig. 5a). Similarly, utilization of
ammonia was predicted to be higher for both virginiamycin
and narasin (Supplementary Fig. 5b). Not only was there a higher

Fig. 3 Correlation between gene and relative abundance contributions of core genera. Rows in the figure indicate functional terms (subsystems)
significantly enriched by different treatments when considering only genes assigned to core genera of the cecum microbiome. Each dot represents a core
microbial genus and its corresponding value on the x-axis shows the spearman correlation between the relative abundance of the genus and its
contribution to the abundance of the corresponding functional term across all samples (n= 74 birds). The functional contribution is calculated as the mean
copy number contributed by the genus across all the genes in the subsystem. Dot colors indicate the Spearman correlation p-value. BMD bacitracin
methylene disalicylate, AVI avilamycin, VIR virginiamycin, NAR narasin.
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predicted capacity of the core cecum microbiome to use urea and
ammonia with narasin, but these metabolites were also more
often essential for growth in this treatment (Supplementary
Fig. 5c, d). Moreover, the genus-level metabolic reconstructions
allowed us to look at the contributions of each of the core genera
to the above sample-level predictions. Our analyses suggest that
the higher urea utilization potential in the narasin treatment is
partly driven by higher abundances of Ruminoccocus, Blautia and
Lachnoclostridium (Supplementary Fig 5e).

Untargeted metabolomics supports a role of the narasin-
induced microbiome on nitrogen balance. To obtain further

evidence of the metabolic consequences of cecal microbiome
differences due AGP treatment, we performed untargeted meta-
bolomics on the cecum and serum of day 35 control and narasin-
treated birds. Altogether, 712 and 723 named metabolites were
identified across 30 cecal and 20 serum samples, respectively. Of
these, 49 were found at higher abundance and 78 at lower
abundance in the cecum of narasin treated birds compared to
controls (Welch’s t-test, Benjamini-Hochberg corrected p-value <
0.05). In the serum, 4 metabolites were found at higher abun-
dance and 93 at lower abundance in narasin-treated birds (Sup-
plementary Data 6). To broadly characterize these metabolites, we
ran GSEA ranking all detected metabolites according to their

Fig. 4 Antimicrobial resistance gene abundance in the cecal microbiome of birds treated with different AGP. a) Total AMR gene abundance (RPKM) as
a function of treatment group. b) Number of distinct AMR genes detected as a function of treatment group. * one-sided Mann-Whitney p-value < 0.05.
n= 15 birds per group. The boxes in a, and b represent the median and interquartile range; whiskers indicate the range of the distribution excluding outliers.
C control, B BMD, A avilamycin, V virginiamycin, N narasin. c) ANOSIM analysis of the Bray-Curtis dissimilarities between samples in different treatments
based on their AMR profiles. In the heatmap, values below the diagonal represent the ANOSIM R-score. Lower values indicate more similar AMR profiles
between treatments. Values above the diagonal indicate the corresponding p-values for the null hypothesis that AMR profiles are similar between
treatments. d) Abundance of AMR genes of distinct classes for samples in different treatment groups (colors). Classes are sorted according to their mean
AMR gene abundance across samples. Color arrows indicate a significant (p-value < 0.05) increase (pointing up) or decrease (pointing down) in the
abundance of AMRs in the corresponding color treatments compared to control samples. MLS macrolides, lincosamides, and streptrogramin A and B.
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standardized difference between treatments (see Methods). In the
cecum, dipeptides (Supplementary Fig. 6a) and metabolites
implicated in amino acid metabolism were significantly depleted
by the narasin treatment, along with several long-chain fatty acids

(FDR < 0.15). Metabolites related to hemoglobin and porphyrin
metabolism, fructose and galactose metabolism, tocopherol, ino-
sitol, riboflavin and nicotinate and nicotinamide metabolism were
enriched. In the serum, phospholipids, fatty acids, and

Fig. 5 Predicted metabolic properties of the core cecum microbiome. a) The predicted ability of each core genera to use individual compounds as main
carbon sources for biomass synthesis. Core genera are shown in the columns grouped by taxonomic family. Each row represents a distinct carbon-
containing compound. b) Like a but for the ability to use individual compounds as main nitrogen sources. c) The number of carbon sources with
significantly (one-sided Mann-Whitney U p-value < 0.05) higher or lower utilization potential in samples from each of the AGP treatments compared to
control. d) Like c but for compounds used as nitrogen sources. e) The total metabolic demand for core microbiome biomass synthesis across treatments.
The total metabolic demand represents the likelihood that any given metabolite is essential for the growth of a random member of the core cecum
microbiome. Boxes represent the median and interquartile range; whiskers indicate the range of the distribution excluding outliers. * two-sided Mann-
Whitney U p-value < 5 × 10−3. n= 15 birds per treatment. C control, B BMD, A avilamycin, V virginiamycin, N narasin.
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metabolites associated with secondary bile acid metabolism, heme
degradation and vitamin A metabolism were enriched, while
hexosylceramides, and metabolites involved in arginine metabo-
lism were depleted (Supplementary Data 7).

Notably, all 20 amino acids were found at lower concentrations
in the cecum of narasin-treated birds (Fig. 6a). Uric acid, the
main nitrogen excretion product in birds, was found at lower
levels in the cecum and serum of narasin treated birds compared
to controls (Fig. 6b), while urea was significantly more abundant
in the serum of control birds (Fig. 6c). Thus, the abundance of
several metabolites associated with altered demands or enriched
functions according to the metabolic models and GSEA analyses
were also found to have differential abundances in the
metabolomics data. Other examples include a higher concentra-
tion in the cecum of heme degradation metabolites such as
bilirubin, biliverdin and others, and the enrichment of heme and
tetrapyrrole biosynthesis-related genes (Supplementary Fig. 6b),
the lower demand and higher concentration of riboflavin in the
cecum of narasin treated birds (Supplementary Fig. 6c), and the
higher demand and lower concentration in the cecum and serum
of spermidine (Supplementary Fig. 6d).

Finally, we investigated the correlation between the cecum and
serum metabolite abundances and bird weights at day 35 in each
of the two treatments. GSEA of metabolites ranked by the
strength of their correlation with weight showed that in both
treatments (control and narasin) and body sites (cecum and
blood), the abundance of long-chain fatty acids tended to be
negatively correlated with weight gain (Supplementary Data 8).
Additionally, in the serum of narasin-treated birds and the cecum
of control birds, metabolites from primary and secondary bile
acid metabolism were positively correlated with performance.
These observations, along with the lower concentration of long-
chain fatty acids in the cecum of narasin-treated birds, suggest
that lipid metabolism and absorption play a role in AGP
mechanisms as previously proposed22. Indeed, we observed a
trend of lower abundances of bile salt hydrolases in the AGP
treatments compared to controls (Supplementary Fig. 7). Inter-
estingly, amino acids and dipeptides showed contrasting enrich-
ment patterns between the control and narasin treatments. While
both types of molecules were less abundant in the cecum of
narasin-treated birds, their abundance in the cecum tended to be
positively correlated with growth when narasin was provided, but
was negatively correlated in controls (Fig. 6d). In addition,
dipeptides were positively correlated with growth when measured
in the serum of control birds. A similar pattern was observed for
amino acids in serum for both treatments (Fig. 6e). Thus, our
observations and simulation results indicate that nitrogen
metabolism in the cecum was likely altered by narasin treatment
and suggest that this effect might have contributed to the nitrogen
balance of the host.

Discussion
The gut microbiome is often viewed as a virtual organ with its
own development, heritability, and metabolic, immunologic, and
endocrine functions42,43. Like other organs, the microbiome plays
key physiological roles and underlies different pathologies. As
AMR concerns escalate due in part to the widespread application
of AGP in animal agriculture, understanding how the gut
microbiome contributes to animal performance can point to
novel strategies to maintain animal protein production while
reducing the use of antibiotics.

Our study showed that four distinct AGP changed the com-
position, gene content, and AMR profile of the cecum micro-
biome of chickens. While several gene functions were enriched or
depleted by single or multiple of the AGP treatments, additional

evidence is necessary to advance from associations such as these
to hypotheses about causation. Interestingly, many of the iden-
tified shifts in the abundance of gene functions were driven by
abundance changes of a reduced set of core microbiome mem-
bers. This led us to hypothesize that the metabolic requirements
and outputs associated with the growth of those microorganisms
could contribute to the observed effects on performance. Using
draft metabolic reconstructions, we estimated that the micro-
biome associated with AGP producing the largest effects
on performance had fewer metabolite requirements for growth
and were able to synthesize biomass from more diverse carbon
and nitrogen sources. Thus, a high microbial density
(~1010–1011 cfu/g)29 with a defined composition in the chicken
cecum can provide a direction of causality based on the impact of
microbial growth and metabolism on host physiology.

One of the functions of the avian cecum is the recycling of
excreted nitrogen from the host31. Earlier studies showed that
uric acid and urea are rapidly degraded to ammonia in the
cecum30,44. It was also shown that nitrogen from urea supplied
directly to the cecum is re-absorbed not as ammonia but as
protein, urea, and amino acids45. Our observations of enriched
urea degradation genes and lower uric acid levels in the cecum,
lower urea levels in the serum, and a higher predicted core
microbiome capacity to use urea and ammonia as nitrogen
sources in narasin treated birds support the hypothesis that
nitrogen recycling contributes to AGP effects on performance.
This is also consistent with the positive correlation between urea
degradation genes and bird weight at day 35 observed in control
birds. A higher turnover of excreted nitrogen to usable amino
acids in the cecum would support protein synthesis by the host
while also reducing any potential toxicity of urea in the blood46

(Supplementary Note 3). Moreover, because birds do not have a
complete urea cycle, the higher concentration of urea in control
birds could, among others, indicate a higher activity of renal
arginase which could increase arginine requirements compared to
birds in the narasin treatment47,48.

In addition to nitrogen metabolism, our results showed that the
concentration of primary and secondary bile salts, as well as long-
chain fatty acids were altered as a function of bird weight and
upon narasin treatment. This is consistent with the previously
proposed hypothesis that AGP may drive performance by
maintaining higher levels of active bile salts (inhibiting microbes
carrying bile salt hydrolases) and thus facilitating the absorption
of fatty acids22,23. Other processes of interest include the
enrichment by narasin of heme and tetrapyrrole metabolism
genes and the observation of higher levels of bilirubin and bili-
verdin in the cecum. Bilirubin has antioxidant and anti-
inflammatory activity49 which might have contributed to the
higher performance of narasin-treated birds (Supplementary
Note 4). The lower prevalence of microbial genes associated with
the degradation of matrix polysaccharides observed with narasin
may also point to decreased inflammation. On one hand, this
could reflect reduced mucus production by the intestinal epi-
thelium which is a symptom of low inflammation, a proposed
mechanism of AGP12. On the flip side, lower mucus degradation
by the gut microbiome could itself alleviate the inflammatory
response, as increased degradation of host glycoproteins by the
gut microbiota has been associated with erosion of the mucosal
barrier50.

Given that the cecal microbiome of chickens is known to differ
between geographical locations51 diets, litter quality52 and even
growth cycles32, it is possible that the results presented here do
not exactly replicate in other studies. In particular, reused litter,
which is common in broiler production in the United States and
other countries53, may limit the replicability of some of our
results. Nevertheless, by focusing on functional and metabolic
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changes, some of the processes described here may play a role in
driving poultry performance in other settings. Indeed, a lower
concentration of amino acids in the cecum was also recently
observed in turkeys fed with BMD13, and the observation of
altered levels of bile salt hydrolases in our study agree with prior
research on the mechanisms of AGP22,54. Finally, the general
observation of different AGP having different impacts on the gut
microbiome composition confirms prior results36,37, while adding
significantly more details as to what these changes represent in
terms of functional potential and physiological impacts for
the host.

In conclusion, growth promotion induced by different AGP is
accompanied by common and unique cecal microbiome differ-
ences at the taxonomic, metagenomic, and metabolomic levels
compared to untreated birds. Furthermore, several of these dif-
ferences support mechanistic hypotheses as to how microbial
activities may contribute to bird health and performance.
Therefore, charting the landscape of microbiome functional
changes induced by antibiotics and other types of nutritional
interventions, together with a detailed description of how the

physiology of individual microbes contributes to such processes
(e.g. through genome-scale metabolic modeling), sets the stage for
precision microbiome engineering for both animal and human
health.

Methods
Clinical study. The live animal experiment and procedures were approved by
Elanco institutional animal care committee, approval number IACUC # EIAC-
0773.

500 healthy Ross 708 male broilers sourced from a commercial hatchery were
used in the experiment. Birds had an approximate weight of 35 to 45 g at the start
of the study and received a 1x dose of Coccivac®-B52 vaccine (Merck Animal
Health) within 24 h of arrival at the study site. Chicks were sexed at the hatchery by
feather sexing. Birds were individually tagged with a unique identifier and were
randomly assigned to one of 25-floor pens (20 animals per pen). Groups of 5 pens
were assigned to each of 5 different treatments at random. The 5 treatments
included: 1) control birds fed least-cost diets (Supplementary Table 1) as follows: A
starter diet was fed from day 0 to day 14 of the study, followed by a grower diet (14-
28 d) and a finisher diet (28-35 d). 2) Birds fed the above diets supplemented with
50 g/ton BMD. 3) 20 g/ton avilamycin. 4) 16.5 g/ton virginiamycin. And 5) 70 g/ton
narasin. Manufacturer and dose information is presented in Supplementary
Table 2. The selected doses reflect amounts typically used for growth promotion37.
Birds were raised for a total of 35 days in a barn on top of used litter. Litter was

Fig. 6 Cecum and serum metabolites altered by narasin treatment. a) The median-normalized ion counts (scaled intensity) of 20 amino acids in the
cecum of control and narasin treated birds. *Welch’s t p-value < 0.05, n= 15 birds per treatment. b) The scaled intensity of uric acid in the cecum and
serum of control and narasin treated birds. c) The scaled intensity of urea in the serum control and narasin treated birds. The boxes in a, b, and c represent
the median and interquartile range; whiskers indicate the range of the distribution excluding outliers. d) The correlation between the abundance of
dipeptides and amino acids in the cecum and bird weight at day 35 for control and narasin treated birds. Dashed red lines represent the correlation
threshold for p-values < 0.05. e) The correlation between the abundance of amino acids in the serum and bird weight at day 35 for control and narasin
treated birds. In panels d and e, the x-axis values show the Pearson correlation coefficient between the logarithm of the scaled intensities and weight.
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obtained from untreated (control) birds from a previous study in an adjacent barn.
Litter was mixed 50/50 with fresh litter and distributed to the pens for this study.

Individual body weights were collected on days 0, 7, 21, and 35. Pen weights
were collected on days 14 and 28. Feed weigh backs for each pen were done on days
7, 14, 21, 28, and 35 of the study. Average bird weights and feed intake per pen
were used to calculate weekly values of average daily gain and feed conversion
ratios.

On days 7, 21, and 35 three birds per pen were randomly selected and
euthanized for the collection of cecal contents and blood. Blood was collected via
wing vein venipuncture, except for birds that were too small, in which cases direct
heart puncture was used. In both cases, blood was collected into vacutainer tubes,
allowed to clot, and centrifuged to obtain serum. Cecal samples were collected by
aseptically squeezing the cecum content into a sterile tube. Cecal samples were
placed on dry ice immediately after collection. All samples were stored at −80 °C
until processing.

16S sequencing and analysis. Total DNA from cecal content samples was
extracted using the Lysis and Purity kit (Shoreline Biome, Farmington, CT) fol-
lowing the manufacturer’s protocol. The resulting DNA was used for library pre-
paration with the Shoreline Biome V4 16 S DNA Purification and Library Prep Kit
(Shoreline Biome, Farmington, CT). PCR amplification of the V4 region of the 16 S
rRNA gene was performed using the 515 F (5′GTGGCCAGCMGCCGCGGTAA)
and 806 R (5′-GGACTACHVHHHTWTCTAAT) primers. The resulting ampli-
cons were then sequenced using 2 × 250 bp paired-end kits on the Illumina MiSeq
platform.

Paired raw reads were processed with cutadapt (v. 2.5)55 followed by DADA2
(v.1.12.1)56 to generate a matrix of read counts per sample at the level of amplicon
sequence variants (ASV). DADA2 parameters maxN= 0, truncQ= 2,
rm.phix= TRUE and maxEE= 2 were used. The assignTaxonomy method of
DADA2 was used to assign genus-level taxonomic labels to each of the ASV based
on the Silva v. 138 database57. Reads assigned to the Vibrionaceae family were
removed from the analysis; these correspond to a small amount (~1% relative
abundance) of Vibrio harveyii that was spiked into some of the samples. The mean
sequencing depth after filtering was 43,955 reads per sample (standard
deviation= 12,391).

The Chao1 and Simpson measures of alpha diversity were calculated from the
matrix of raw counts using the scikit-bio (v. 0.5.6) python package and compared
across treatments at each sampling time using the Mann-Whitney U test. The raw
counts matrix was sum-normalized to generate a matrix of relative abundances of
ASV per sample. Bray-Curtis dissimilarities between all pairs of samples were
calculated from the relative abundance matrix using the pdist method in the sicpy
(v. 1.3.1) python package. Principal component analysis of the dissimilarity matrix
(principal coordinates analysis) was carried out using the implementation in the
scikit-learn (v. 0.21.3) python package. ANOSIM analyses between all treatment
and time point combinations were carried out using the anosim method in scikit-
bio.

Shotgun metagenomics sequencing and data pre-processing. 74 frozen cecal
samples from day 35 birds were sent to CosmosID (Rockville, MD) for shotgun
metagenomics sequencing. DNA was extracted using the ZymoBIOMICS DNA
Miniprep Kit (ZymoBIOMICS, Irvine, CA) according to the manufacturers pro-
tocol. The isolated DNA was quantified by Qbit (ThermoFisher, Coon Rapids,
MN). DNA libraries were prepared using the Illumina Nextera XT library pre-
paration kit (Illumina, San Diego, CA), with a modified protocol. Libraries were
then sequenced on an Illumina HiSeq platform 2x150bp, with an average read
depth of 2 million paired reads per sample.

Reads were trimmed and Illumina adapters removed using Trimmomatic (v
0.39)58 with options SLIDINGWINDOW:5:20 LEADING:3 TRAILING:3. Host
reads (Gallus gallus, GenBank assembly GCA_000002315) and spike-in reads from
Vibrio harveyii (ATCC 14126) were removed using Bowtie2 (v. 2.3.5.1)59.

Taxonomic profiling from shotgun metagenomics. Taxonomic profiling of
individual reads was carried out using Kaiju (v. 1.7.3)60 with the nr_euk database.
Kaiju outputs for each read were expressed as the number of bases aligned to the
reference database. In cases of individual reads mapping to more than one taxo-
nomic group in the database, the number of bases assigned to each taxon was
calculated as the alignment length (in base pairs) multiplied by the fraction of bases
assigned unambiguously to said taxon out of all bases assigned unambiguously to
all taxa to which the read mapped. The numbers of classified bases per read were
used to estimate species-level relative abundances using metametamerge (v. 1.1)61

while correcting for the average coding length per species in the nr_euk database.
For taxonomy level analyses, only species/genera with a mean relative abundance
across samples higher than 10−4 were used62.

Differential abundance of individual genera in each of the AGP treatments
compared to the control was carried out for samples collected on day 35 starting
from the genus-level relative abundances. Statistical tests were done using the
taxa.compare method in the metamicrobiomeR63 (v. 1.2) which uses generalized
additive models for location, scale, and shape with a zero-inflated beta family

distribution for the comparison of microbial relative abundances. p-values were
corrected using the FDR method.

Functional profiling. Functional profiling of was done by first assembling reads
from each sample into contigs using Spades (v. 3.13.1, option—meta)64 with
default parameters, followed by protein prediction with Prokka (v. 1.14.5)65. Pre-
dicted protein sequences were aligned to a reference database and using Diamond
(v. 0.9.30)66 and annotated based on the function assigned to the top hit in the
database. To avoid misannotations67, we only considered hits with at least 70%
identity and 70% query coverage. The reference database was built starting from
46,181 complete bacterial genomes downloaded from the PATRIC68 database
representing at most 10 genomes per species from ~400 taxonomic families
including those most frequently observed in broiler microbiomes. To speed up
functional annotations, protein sequences within each family in the database were
clustered at 90% sequence identity using CD-HIT (v. 4.8.1)69 and the longest
sequence from each cluster was kept for the diamond search.

To quantify the abundance of each function per sample, reads were mapped to
the corresponding contigs using BWA (v. 0.7.17)70, and reads mapping to each
predicted protein were counted with HTseq (v. 0.11.3)71. Read counts per RAST
functional role38 were TPM normalized based on the Prokka protein lengths72 and
expressed in units of mean copy numbers per genome by calculating a
normalization factor such that the median abundance of a set of universal-single
copy bacterial genes73 (Supplementary Table 3) was set to 174. A similar procedure
was used to produce a copy-number normalized matrix of functional roles across
samples stratified by the taxonomic genus of the protein hits used to transfer
functional annotations. This matrix was used to study the contribution of core
cecum microorganisms to functional differences between samples.

ANOSIM analyses on the metagenomics derived taxonomic and functional
profiles were calculated as described for the 16 S data; except that the copy number-
normalized abundances were used for functional profiles. Gene set enrichment
analysis (GSEA) was carried out using the prerank method in the gseapy (v. 0.10.2)
python package. For this, gene sets were defined based on the RAST hierarchy of
functional roles parsed from PATRIC genomes. For each AGP, functional roles
with mean copy numbers higher than zero in at least two samples were ranked
based on the Z-score of their normalized abundances compared to controls
(Eq. 1)75:

Z ¼ μAGP � μcontrol
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2AGP
nAGP

þ σ2control
ncontrol

q ð1Þ

where μ represent the average copy number of the roles in the respective treatment
and σ represent the corresponding standard deviations. An equivalent analysis was
performed by ranking functional roles with mean copy numbers higher than zero
in at least three samples according to the Spearman correlation coefficient of their
abundance and corresponding bird weights at day 35. The analysis was done
separately for each treatment.

The core cecum microbiome was defined based on the metagenomics-based
genus-level taxonomic profiles. Genera were ranked based on their mean relative
abundances across samples, and the most abundant genera adding up to 90% of
mean relative abundances were defined as core. The abundances of Prokka
predicted genes with top diamond hits belonging to these genera were used to
calculate the core microbiome contribution to functional abundances. Specifically,
as the sum of the abundances of the genes with top hits in core genera. GSEA was
carried out as described above for the comparison between AGP and controls but
using only functional role abundances contributed by core genera.

AMR gene abundance analysis. AMR gene abundances per sample were deter-
mined using the AMR++ pipeline40 (v. 2.0.2) starting from the raw metagenomics
sequences and using the MegaRes (v. 2.0.0) database. Only genes involved in drug
resistance were considered. The AMR gene counts per sample obtained from
AMR++ were expressed in units of reads per kilobase per million reads (RPKM)
based on the corresponding gene lengths from the MegaRes database.

GSMM reconstruction of core genera in the cecum. Starting from the diamond
search results, we collected the RAST gene functional roles of top hits belonging to
the 25 core genera. For the metabolic reconstructions we focused only on func-
tional roles mapping to reactions in the ModelSeed database76. The mean number
of unique metabolic roles per genus based on the metagenomics data was 398
whereas the mean number of roles across fully sequenced PATRIC genomes of the
same genera was 453. Thus, we relied on the metabolic roles from reference
sequenced genomes to produce lists of roles for each core genus of the expected
size. Specifically, we used SiGMoiD77, a recently developed statistical framework
for modeling binary data, to estimate the conditional probability that a metabolic
role not present in the annotation of a genus is present in said genus given the
metabolic roles present in the annotation. We then added to each genus the top-
most probable functional roles up to the mean number of metabolic roles from
corresponding sequenced representatives.

Once we obtained a list of metabolic roles for each core genera, we relied on the
mapping files from the ModelSeed database to generate draft metabolic
reconstructions. Specifically, roles were mapped to complexes and complexes to

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03239-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:293 | https://doi.org/10.1038/s42003-022-03239-6 |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


ModelSeed reactions to produce a list of metabolic reactions for a given genus. The
template biomass compositions for Gram-positive and Gram-negative bacteria
from ModelSeed were used as the biomass synthesis reactions of corresponding
core genera.

Following a similar approach to that of ModelSeed76,78, gap-filling reactions
were added according to the set of reaction penalties specified in the ModelSeed
database, reaction bonus scores were also calculated for each model based on the
presence of reactions in RAST subsystems and “scenarios” in each of the
reconstructions, as previously described76. A linear optimization problem was
formulated starting from a universal metabolic network made from all reactions in
the ModelSeed database. In the optimization, we enforced a minimal level of
biomass production (0.001 mmol/g dry weight (DW)) and minimized fluxes
through reactions not present in the initial reconstruction of a specific genus,
weighted by corresponding reaction scores (penalties + bonuses)79. The
optimization was done on a simulated complete media; meaning that uptake of all
metabolites for which transport reactions were present in the initial reconstruction
was allowed. Any additional reactions carrying non-zero flux were added to the
initial reconstruction.

Flux Balance Analysis of core genera metabolism. We collected lists of carbon
and nitrogen-containing compounds with transport reactions across all 25
reconstructions. We then used FBA to predict the ability of each of these com-
pounds to serve as the main carbon or nitrogen source for growth as described
previously80. Briefly, to test if a carbon source can support growth, we used FBA to
predict the maximum biomass synthesis rate when the total uptake fluxes through
all carbon-containing compounds were limited to 10 mM of carbon per gram of
dry weight. Then for each tested compound, we simulated maximum biomass
production when that compound was not included in the above constraint. If the
value obtained was at least twice the baseline we considered that such compound
could be used as a main carbon source. An analogous analysis was done for
nitrogen sources. The utilization potential of individual compounds was calculated
as the sum of the core relative abundances of genera predicted to use that com-
pound as a carbon or nitrogen source.

The metabolic demand for a given sample was calculated as follows. First, we
calculated an essentiality score for each metabolite with transport reactions for each
of the 25 genera. The essentiality score for a given metabolite was defined as the
fraction of in silico media conditions in which the metabolite was essential for
biomass synthesis. To simulate media conditions for a given reconstruction, we
closed all uptake reactions and then randomly opened a random subset of uptake
reactions by sampling from a binomial distribution with p= 0.9. If a random
media composition thus defined supported biomass synthesis, we tested the
essentiality of metabolites with open uptakes in said media. For this, the uptake
reaction of the metabolite was closed, and the feasibility of biomass synthesis was
evaluated with FBA. If the model was unable to simulate biomass synthesis after
closing the uptake of the metabolite, the metabolite was deemed essential for that
condition. Altogether, a total of 1000 viable random media were considered for
each genus, and the essentiality score of each metabolite was calculated relative to
the number of media in which the metabolite was present. Second, the essentiality
scores for each genus were averaged across metabolites and multiplied by the core
abundance of the genus. Third, we summed the product of core relative
abundances and average essentiality scores across core genera. For individual
metabolites, the metabolic demand was calculated as the sum across core genera of
the essentiality scores for the metabolite multiplied by core relative abundances.

The 90% probability for external metabolites used to simulate random media
was used to account for differences in metabolite essentiality across environmental
conditions. Similar results were obtained at lower metabolite probabilities and
when, in addition to metabolites with transporters, reactions for the direct uptake
of metabolites without transporters were also included with various probabilities
(Supplementary Fig. 8). This was done to account for possible transport reactions
missing in the metagenomics annotation.

Untargeted metabolomics. For both the control and narasin treatments, 15 cecal
samples and 10 serum samples from day 35 birds were sent to Metabolon (Mor-
risville, NC) for untargeted metabolomics analysis. Serum samples were selected
sequentially, that is, without knowledge of bird performance or results from other
analyses. Metabolomics data were obtained via Ultrahigh Performance Liquid
Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) (Supplementary
Methods).

Peaks were quantified as area-under-the-curve (AUC) detector ion counts
(Supplementary Data 9). For each identified metabolite, AUC values were rescaled
by dividing by the median AUC value across all samples. Any missing values after
re-scaling were imputed with the minimum value observed for that compound
across samples. Correlations between metabolite levels and corresponding bird
weights at day 35 were calculated using the Pearson correlation of the log-
transformed data.

A classification of metabolites into pathways and super-pathways
(Supplementary Data 10) was used for running GSEA based on metabolites ranked
by their Welch’s t score between treatments and by their correlation with weight. A
minimum set size of 3 metabolites per set was used.

Statistics and reproducibility. Weekly values for ADG and FCR were compared
between AGP treatments and control using the one-sided Mann Whitney U test;
comparisons between AGP treatments were done using the two-sided test. In both
cases 5 replicates (pens) per treatment group were used. α-diversity measures and
metabolic demands between pairs of AGP treatments were compared using the
two-sided Mann-Whitney U test. Fifteen replicates (individual birds) per treatment
were used for comparison. AMR RPKM values, number of AMR genes and carbon
and nitrogen compounds with higher or lower utilization potential were compared
using the one-sided Mann Whitney U test (n= 15). Metabolite abundances
between treatments in either the cecum or serum were compared using Welch’s t
tests on the log-transformed scaled and imputed data. Fifteen replicates (individual
birds) per treatment were used for cecum samples, whereas 10 replicates were used
for serum samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw 16 S and shotgun metagenomics sequences were deposited in the SRA database
under accession number PRJNA751585. Draft metabolic reconstructions for the 25 core
genera, and taxonomic and functional profiles based on the 16 S and shotgun
metagenomics data are available from https://github.com/platyias/BroilerCoreModels.

Code availability
Python code for flux simulations of nutrient utilization potential and metabolite
essentiality are also available from https://github.com/platyias/BroilerCoreModels81.
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